Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Med Biol ; 59(24): 7753-66, 2014 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-25419723

RESUMO

This study investigated the accuracy of positioning and irradiation targeting for multiple off-isocenter targets in intracranial image-guided radiation therapy (IGRT). A phantom with nine circular targets was created to evaluate both accuracies. First, the central point of the isocenter target was positioned with a combination of an ExacTrac x-ray (ETX) and a 6D couch. The positioning accuracy was determined from the deviations of coordinates of the central point in each target obtained from the kV-cone beam computed tomography (kV-CBCT) for IGRT and the planning CT. Similarly, the irradiation targeting accuracy was evaluated from the deviations of the coordinates between the central point of each target and the central point of each multi-leaf collimator (MLC) field for multiple targets. Secondly, the 6D couch was intentionally rotated together with both roll and pitch angles of 0.5° and 1° at the isocenter and similarly the deviations were evaluated. The positioning accuracy for all targets was less than 1 mm after 6D positioning corrections. The irradiation targeting accuracy was up to 1.3 mm in the anteroposterior (AP) direction for a target 87 mm away from isocenter. For the 6D couch rotations with both roll and pitch angles of 0.5° and 1°, the positioning accuracy was up to 1.0 mm and 2.3 mm in the AP direction for the target 87 mm away from the isocenter, respectively. The irradiation targeting accuracy was up to 2.1 mm and 2.6 mm in the AP direction for the target 87 mm away from the isocenter, respectively. The off-isocenter irradiation targeting accuracy became worse than the positioning accuracy. Both off-isocenter accuracies worsened in proportion to rotation angles and the distance from the isocenter to the targets. It is necessary to examine the set-up margin for off-isocenter multiple targets at each institution because irradiation targeting accuracy is peculiar to the linac machine.


Assuntos
Neoplasias Encefálicas/radioterapia , Tomografia Computadorizada de Feixe Cônico/instrumentação , Cabeça/efeitos da radiação , Posicionamento do Paciente , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Simulação por Computador , Tomografia Computadorizada de Feixe Cônico/métodos , Humanos , Processamento de Imagem Assistida por Computador , Aceleradores de Partículas
2.
Nihon Hoshasen Gijutsu Gakkai Zasshi ; 69(6): 663-8, 2013 Jun.
Artigo em Japonês | MEDLINE | ID: mdl-23782779

RESUMO

Dose calculation algorithms in radiation treatment planning systems (RTPSs) play a crucial role in stereotactic body radiation therapy (SBRT) in the lung with heterogeneous media. This study investigated the performance and accuracy of dose calculation for three algorithms: analytical anisotropic algorithm (AAA), pencil beam convolution (PBC) and Acuros XB (AXB) in Eclipse (Varian Medical Systems), by comparison against the Voxel Monte Carlo algorithm (VMC) in iPlan (BrainLab). The dose calculations were performed with clinical lung treatments under identical planning conditions, and the dose distributions and the dose volume histogram (DVH) were compared among algorithms. AAA underestimated the dose in the planning target volume (PTV) compared to VMC and AXB in most clinical plans. In contrast, PBC overestimated the PTV dose. AXB tended to slightly overestimate the PTV dose compared to VMC but the discrepancy was within 3%. The discrepancy in the PTV dose between VMC and AXB appears to be due to differences in physical material assignments, material voxelization methods, and an energy cut-off for electron interactions. The dose distributions in lung treatments varied significantly according to the calculation accuracy of the algorithms. VMC and AXB are better algorithms than AAA for SBRT.


Assuntos
Pulmão/efeitos da radiação , Radiocirurgia , Dosagem Radioterapêutica , Algoritmos , Humanos , Método de Monte Carlo
3.
Nihon Hoshasen Gijutsu Gakkai Zasshi ; 69(4): 400-6, 2013 Apr.
Artigo em Japonês | MEDLINE | ID: mdl-23609862

RESUMO

The aim of this study was to measure the dose attenuation caused by a carbon fiber radiation therapy table (Imaging Couch Top; ICT, BrainLab) and to evaluate the dosimetric impact of ICT during stereotactic body radiation therapy (SBRT) in lung tumors. The dose attenuation of ICT was measured using an ionization chamber and modeled by means of a treatment planning system (TPS). SBRT was planned with and without ICT in a lung tumor phantom and ten cases of clinical lung tumors. The results were analyzed from isocenter doses and a dose-volume histogram (DVH): D95, Dmean, V20, V5, homogeneity index (HI), and conformity index (CI). The dose attenuation of the ICT modeled with TPS agreed to within ±1% of the actually measured values. The isocenter doses, D95 and Dmean with and without ICT showed differences of 4.1-5% for posterior single field and three fields in the phantom study, and differences of 0.6-2.4% for five fields and rotation in the phantom study and six fields in ten clinical cases. The dose impact of ICT was not significant for five or more fields in SBRT. It is thus possible to reduce the dose effect of ICT by modifying the beam angle and beam weight in the treatment plan.


Assuntos
Neoplasias Pulmonares/radioterapia , Radiocirurgia/instrumentação , Dosagem Radioterapêutica , Carbono , Fibra de Carbono , Humanos , Imagens de Fantasmas
4.
J Appl Clin Med Phys ; 13(5): 3856, 2012 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-22955651

RESUMO

We measured the angular dependence of central and off-axis detectors in a 2D ionization chamber array, MatriXX, and applied correction factors (CFs) to improve the accuracy of composite dose verification of IMRT and VMAT. The MatriXX doses were measured with a 10° step for gantry angles (θ) of 0°-180°, and a 1° step for lateral angles of 90°-110° in a phantom, with a 30 × 10 cm2 field for 6 MV and 10 MV photons. The MatriXX doses were also calculated under the same conditions by the Monte Carlo (MC) algorithm. The CFs for the angular dependence of MatriXX were obtained as a function of θ from the ratios of MatriXX-measured doses to MC-calculated doses, and normalized at θ = 0°. The corrected MatriXX were validated with different fields, various simple plans, and clinical treatment plans. The dose distributions were compared with those of MC calculations and film. The absolute doses were also compared with ionization chamber and MC-calculated doses. The angular dependence of MatriXX showed over-responses of up to 6% and 4% at θ = 90° and under-responses of up to 15% and 11% at 92°, and 8% and 5% at 180° for 6 MV and 10 MV photons, respectively. At 92°, the CFs for the off-axis detectors were larger by up to 7% and 6% than those for the central detectors for 6 MV and 10 MV photons, respectively, and were within 2.5% at other gantry angles. For simple plans, MatriXX doses with angular correction were within 2% of those measured with the ionization chamber at the central axis and off-axis. For clinical treatment plans, MatriXX with angular correction agreed well with dose distributions calculated by the treatment planning system (TPS) for gamma evaluation at 3% and 3 mm. The angular dependence corrections of MatriXX were useful in improving the measurement accuracy of composite dose verification of IMRT and VMAT.


Assuntos
Radiometria/instrumentação , Planejamento da Radioterapia Assistida por Computador/instrumentação , Radioterapia de Intensidade Modulada/instrumentação , Algoritmos , Calibragem , Humanos , Método de Monte Carlo , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA