Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
FEBS J ; 289(1): 113-116, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34580987

RESUMO

Cartilage homeostasis is maintained by a delicate balance between anabolism and catabolism. In osteoarthritis, pathological biomechanics or injury triggers cartilage breakdown, nonresolving synovial inflammation, and bone changes, causing reduced joint mobility and incapacitating pain. Undoubtedly, the most important cartilage degrading collagenase during osteoarthritis, matrix metalloproteinase (MMP)-13, is activated by an unlikely player: neutrophil elastase. Although primarily associated with inflammatory arthritis, neutrophil elastase is present in the osteoarthritic joint, and through activating MMP-13, spurs a cascade of events leading not just to the aberrant destruction of the cartilage itself, but to the proteolysis of its own inhibitor, alpha-1-antitrypsin, as described in the new study by Wilkinson et al. Endowed with potent chondrogenic and cartilage-protective properties, the loss of alpha-1-antitrypsin from cartilage will have major consequences for osteoarthritis progression, and strategies to prevent its loss, or replace it, might provide an innovative treatment opportunity that should not be ignored. Comment on: https://doi.org/10.1111/febs.16127.


Assuntos
Elastase de Leucócito , Osteoartrite , Cartilagem , Condrogênese , Colagenases , Humanos
2.
FASEB J ; 35(5): e21472, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33788977

RESUMO

While new treatments have been developed to control joint disease in rheumatoid arthritis, they are partially effective and do not promote structural repair of cartilage. Following an initial identification of α-1-Antitrypsin (AAT) during the resolution phase of acute inflammation, we report here the properties of this protein in the context of cartilage protection, joint inflammation, and associated pain behavior. Intra-articular and systemic administration of AAT reversed joint inflammation, nociception, and cartilage degradation in the KBxN serum and neutrophil elastase models of arthritis. Ex vivo analyses of arthritic joints revealed that AAT promoted transcription of col2a1, acan, and sox9 and downregulated mmp13 and adamts5 gene expression. In vitro studies using human chondrocytes revealed that SERPINA1 transfection and rAAT protein promoted chondrogenic differentiation through activation of PKA-dependent CREB signaling and inhibition of Wnt/ß-catenin pathways. Thus, AAT is endowed with anti-inflammatory, analgesic, and chondroprotective properties that are partially inter-related. We propose that AAT could be developed for new therapeutic strategies to reduce arthritic pain and repair damaged cartilage.


Assuntos
Artrite Experimental/complicações , Condrócitos/citologia , Condrogênese , Inflamação/prevenção & controle , Dor/prevenção & controle , alfa 1-Antitripsina/farmacologia , Animais , Condrócitos/efeitos dos fármacos , Inflamação/etiologia , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dor/etiologia , Dor/patologia , Ratos , Ratos Wistar
3.
Sci Transl Med ; 12(559)2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32878982

RESUMO

Cartilage loss leads to osteoarthritis, the most common cause of disability for which there is no cure. Cartilage regeneration, therefore, is a priority in medicine. We report that agrin is a potent chondrogenic factor and that a single intraarticular administration of agrin induced long-lasting regeneration of critical-size osteochondral defects in mice, with restoration of tissue architecture and bone-cartilage interface. Agrin attracted joint resident progenitor cells to the site of injury and, through simultaneous activation of CREB and suppression of canonical WNT signaling downstream of ß-catenin, induced expression of the chondrogenic stem cell marker GDF5 and differentiation into stable articular chondrocytes, forming stable articular cartilage. In sheep, an agrin-containing collagen gel resulted in long-lasting regeneration of bone and cartilage, which promoted increased ambulatory activity. Our findings support the therapeutic use of agrin for joint surface regeneration.


Assuntos
Agrina , Cartilagem Articular , Animais , Diferenciação Celular , Condrócitos , Condrogênese , Camundongos , Ovinos , Alicerces Teciduais
4.
Eur J Pharmacol ; 872: 172971, 2020 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-32004526

RESUMO

Human melanocortin MC1 and MC3 receptors expressed on C-20/A4 chondrocytes exhibit chondroprotective and anti-inflammatory effects when activated by melanocortin peptides. Nearly 9 million people in the UK suffer from osteoarthritis, and bacterial infections play a role in its development. Here, we evaluate the effect of a panel of melanocortin peptides with different selectivity for human melanocortin MC1 (α-MSH, BMS-470539 dihydrochloride) and MC3 ([DTrp8]-γ-MSH, PG-990) receptors and C-terminal peptide α-MSH11-13(KPV), on inhibiting LPS-induced chondrocyte death, pro-inflammatory mediators and induction of anti-inflammatory proteins. C-20/A4 chondrocytes were treated with a panel of melanocortin peptides prophylactically and therapeutically in presence of LPS (0.1 µg/ml). The chondroprotective properties of these peptides determined by cell viability assay, RT-PCR, ELISA for detection of changes in inflammatory markers (IL-6, IL-8 and MMP-1, -3 and -13) and western blotting for expression of the anti-inflammatory protein heme-oxygenase-1. C-20/A4 expressed human melanocortin MC1 and MC3 receptors and melanocortin peptides elevated cAMP. LPS stimulation caused a reduction in C-20/A4 viability, attenuated by the human melanocortin MC1 receptor agonist BMS-470539 dihydrochloride, and MC3 receptor agonists PG-990 and [DTrp8]-γ-MSH. Prophylactic and therapeutic regimes of [DTrp8]-γ-MSH significantly inhibited LPS-induced modulation of cartilage-damaging IL-6, IL-8, MMPs -1,-3 and -13 mediators both prophylactically and therapeutically, whilst human melanocortin MC1 and MC3 receptor agonists promoted an increase in HO-1 production. In the presence of LPS, activation of human melanocortin MC1 and MC3 receptors provided potent chondroprotection, upregulation of anti-inflammatory proteins and downregulation of inflammatory and proteolytic mediators involved in cartilage degradation, suggesting a new avenue for osteoarthritis treatment.


Assuntos
Anti-Inflamatórios/farmacologia , Condrócitos/efeitos dos fármacos , Receptor Tipo 1 de Melanocortina/agonistas , Receptor Tipo 3 de Melanocortina/agonistas , Linhagem Celular , Condrócitos/imunologia , Condrócitos/metabolismo , Heme Oxigenase-1/metabolismo , Humanos , Imidazóis , Lipopolissacarídeos/imunologia , Osteoartrite/tratamento farmacológico , Osteoartrite/imunologia , Osteoartrite/patologia
5.
J Immunol ; 198(7): 2876-2885, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28242648

RESUMO

We hypothesized that exudates collected at the beginning of the resolution phase of inflammation might be enriched for tissue protective molecules; thus an integrated cellular and molecular approach was applied to identify novel chondroprotective bioactions. Exudates were collected 6 h (inflammatory) and 24 h (resolving) following carrageenan-induced pleurisy in rats. The resolving exudate was subjected to gel filtration chromatography followed by proteomics, identifying 61 proteins. Fractions were added to C28/I2 chondrocytes, grown in micromasses, ions with or without IL-1ß or osteoarthritic synovial fluids for 48 h. Three proteins were selected from the proteomic analysis, α1-antitrypsin (AAT), hemopexin (HX), and gelsolin (GSN), and tested against catabolic stimulation for their effects on glycosaminoglycan deposition as assessed by Alcian blue staining, and gene expression of key anabolic proteins by real-time PCR. In an in vivo model of inflammatory arthritis, cartilage integrity was determined histologically 48 h after intra-articular injection of AAT or GSN. The resolving exudate displayed protective activities on chondrocytes, using multiple readouts: these effects were retained in low m.w. fractions of the exudate (46.7% increase in glycosaminoglycan deposition; ∼20% upregulation of COL2A1 and aggrecan mRNA expression), which reversed the effect of IL-1ß. Exogenous administration of HX, GSN, or AAT abrogated the effects of IL-1ß and osteoarthritic synovial fluids on anabolic gene expression and increased glycosaminoglycan deposition. Intra-articular injection of AAT or GSN protected cartilage integrity in mice with inflammatory arthritis. In summary, the strategy for identification of novel chondroprotective activities in resolving exudates identified HX, GSN and AAT as potential leads for new drug discovery programs.


Assuntos
Artrite Experimental/patologia , Condrócitos/efeitos dos fármacos , Exsudatos e Transudatos/química , Pleurisia/imunologia , Animais , Modelos Animais de Doenças , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Osteoartrite do Joelho/patologia , Proteômica , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real
6.
Biochem Pharmacol ; 92(2): 336-47, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25175737

RESUMO

INTRODUCTION: Mechanical injury can greatly influence articular cartilage, propagating inflammation, cell injury and death - risk factors for the development of osteoarthritis. Melanocortin peptides and their receptors mediate anti-inflammatory and pro-resolving mechanisms in chondrocytes. This study aimed to investigate the potential chondroprotective properties of α-MSH and [DTRP(8)]-γ-MSH in mechanically injured cartilage explants, their ability to inhibit pro-inflammatory and stimulate anti-inflammatory cytokines in in situ and in freshly isolated articular chondrocytes. METHODS: The effect of melanocortins on in situ chondrocyte viability was investigated using confocal laser scanning microscopy of bovine articular cartilage explants, subjected to a single blunt impact (1.14N, 6.47 kPa) delivered by a drop tower. Chondroprotective effects of α-MSH, [DTRP(8)]-γ-MSH and dexamethasone on cytokine release by TNF-α-activated freshly isolated articular chondrocytes/mechanically injured cartilage explants were investigated by ELISA. RESULTS: A single impact to cartilage caused discreet areas of chondrocyte death, accompanied by pro-inflammatory cytokine release; both parameters were modulated by α-MSH, [DTRP(8)]-γ-MSH and dexamethasone. Melanocortin pre-treatment of TNF-α-stimulated freshly isolated chondrocytes resulted in a bell-shaped inhibition in IL-1ß, IL-6 and IL-8, and elevation of IL-10 production. The MC3/4 antagonist, SHU9119, abrogated the effect of [DTRP(8)]-γ-MSH but not α-MSH on cytokine release. CONCLUSION: Melanocortin peptide pre-treatment prevented chondrocyte death following mechanical impact to cartilage and led to a marked reduction of pro-inflammatory cytokines, whilst prompting the production of anti-inflammatory/pro-resolving cytokine IL-10. Development of small molecule agonists towards melanocortin receptors could thus be a viable approach for preventing chondrocyte inflammation and death within cartilage and represent an alternative approach for the treatment of osteoarthritis.


Assuntos
Cartilagem Articular/lesões , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Mediadores da Inflamação/metabolismo , Fenômenos Mecânicos , Melanocortinas/farmacologia , Animais , Cartilagem Articular/efeitos dos fármacos , Bovinos , Células Cultivadas , Fenômenos Mecânicos/efeitos dos fármacos , Técnicas de Cultura de Órgãos , alfa-MSH/farmacologia
7.
Biochem Pharmacol ; 91(3): 348-58, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25117448

RESUMO

INTRODUCTION: Calcitonin (CT) has recently been shown to display chondroprotective effects. Here, we investigate the putative mechanisms by which CT delivers these actions. METHODS: Immortalized C-28/I2 cells or primary adult human articular chondrocytes (AHAC) were cultured in high-density micromasses to investigate: (i) CT anabolic effects using qPCR and immuhistochemistry analysis; (ii) CT anti-apoptotic effects using quantitation of Bax/Bcl gene products ratio, TUNEL assay and caspase-3 expression; (iii) CT effects on CREB, COL2A1 and NFAT transcription factors. RESULTS: CT (10(-10)-10(-8)nM) induced significant up-regulation of cartilage phenotypic markers (SOX9, COL2A1 and ACAN), with down-regulation of catabolic (MMP1 and MMP13 and ADAMTS5) gene products both in resting and inflammatory conditions. This was mirrored by an augmented production of type II collagen and accumulation of glycosaminoglycan- and proteoglycan-rich extracellular matrix in vitro. Mechanistic analyses revealed only partial involvement of cyclic AMP formation in these effects of CT. Congruently, using reporter assays for specific transcription factors, there was no indication for CREB activation, whereas the COL2A1 promoter was genuinely and directly activated by cell exposure to CT. Phenotypically, these mechanisms supported the ability of CT, whilst inactive on its own, to counteract the pro-apoptotic effects of IL-1ß, demonstrated by TUNEL-positive staining of chondrocytes and ratio of BAX/BCL genes products. CONCLUSION: These data may provide a novel lead for the development of CT-based chondroprotective strategies that rely on the engagement of mechanisms that lead to augmented chondrocyte anabolism and inhibited chondrocyte apoptosis.


Assuntos
Calcitonina/farmacologia , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Substâncias Protetoras/farmacologia , Proteínas ADAM/metabolismo , Proteína ADAMTS5 , Agrecanas/metabolismo , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Cartilagem Articular/citologia , Cartilagem Articular/efeitos dos fármacos , Células Cultivadas , Colágeno Tipo II/biossíntese , Colágeno Tipo II/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Glicosaminoglicanos/biossíntese , Humanos , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Fatores de Transcrição SOX9/metabolismo , Transdução de Sinais/efeitos dos fármacos
8.
Drug Discov Today ; 19(8): 1166-71, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24880108

RESUMO

Appreciation for the resolution of inflammation has increased in recent years, with the detailing of specific mediators and pathways and the identification of (receptor) targets that could be exploited for innovative anti-inflammatory drug discovery programmes. Thus, acute inflammation resolves by the intervention of endogenous anti-inflammatory mediators that reduce white blood cell recruitment and promote removal of migrated leukocytes by apoptosis and phagocytosis by resident 'cleaners', such as the macrophages, resulting ultimately in the repair of the inflamed or injured tissue. Here, we explore a selection of pro-resolving proteinaceous mediators and targets, such as melanocortins and galectins.


Assuntos
Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Animais , Descoberta de Drogas/métodos , Humanos , Transdução de Sinais/efeitos dos fármacos
9.
Br J Pharmacol ; 167(1): 67-79, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22471953

RESUMO

BACKGROUND AND PURPOSE: Melanocortin MC(1) and MC(3 ) receptors, mediate the anti-inflammatory effects of melanocortin peptides. Targeting these receptors could therefore lead to development of novel anti-inflammatory therapeutic agents. We investigated the expression of MC(1) and MC(3) receptors on chondrocytes and the role of α-melanocyte-stimulating hormone (α-MSH) and the selective MC(3) receptor agonist, [DTRP(8) ]-γ-MSH, in modulating production of inflammatory cytokines, tissue-destructive proteins and induction of apoptotic pathway(s) in the human chondrocytic C-20/A4 cells. EXPERIMENTAL APPROACH: Effects of α-MSH, [DTRP(8) ]-γ-MSH alone or in the presence of the MC(3/4) receptor antagonist, SHU9119, on TNF-α induced release of pro-inflammatory cytokines, MMPs, apoptotic pathway(s) and cell death in C-20/A4 chondrocytes were investigated, along with their effect on the release of the anti-inflammatory cytokine IL-10. KEY RESULTS: C-20/A4 chondrocytes expressed functionally active MC(1,3) receptors. α-MSH and [DTRP(8) ]-γ-MSH treatment, for 30 min before TNF-α stimulation, provided a time-and-bell-shaped concentration-dependent decrease in pro-inflammatory cytokines (IL-1ß, IL-6 and IL-8) release and increased release of the chondroprotective and anti-inflammatory cytokine, IL-10, whilst decreasing expression of MMP1, MMP3, MMP13 genes.α-MSH and [DTRP(8) ]-γ-MSH treatment also inhibited TNF-α-induced caspase-3/7 activation and chondrocyte death. The effects of [DTRP(8) ]-γ-MSH, but not α-MSH, were abolished by the MC(3/4) receptor antagonist, SHU9119. CONCLUSION AND IMPLICATIONS: Activation of MC(1) /MC(3) receptors in C-20/A4 chondrocytes down-regulated production of pro-inflammatory cytokines and cartilage-destroying proteinases, inhibited initiation of apoptotic pathways and promoted release of chondroprotective and anti-inflammatory cytokines. Developing small molecule agonists to MC(1) /MC(3) receptors could be a viable approach for developing chondroprotective and anti-inflammatory therapies in rheumatoid and osteoarthritis.


Assuntos
Anti-Inflamatórios/farmacologia , Condrócitos/efeitos dos fármacos , Hormônios Estimuladores de Melanócitos/farmacologia , Substâncias Protetoras/farmacologia , alfa-MSH/farmacologia , gama-MSH/farmacologia , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 7/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Condrócitos/metabolismo , AMP Cíclico/metabolismo , Citocinas/metabolismo , Dinoprostona/metabolismo , Humanos , Metaloproteinases da Matriz/metabolismo , Receptor Tipo 1 de Melanocortina/metabolismo , Receptor Tipo 3 de Melanocortina/metabolismo
10.
Cells Tissues Organs ; 196(3): 251-61, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22398355

RESUMO

In cartilage research bovine articular cartilage is used as an alternative to human tissue. However, animal material is subject to availability and primary cultures undergo senescence, limiting their use. Here we report the immortalization of primary bovine chondrocytes, which could be used as a surrogate for freshly isolated chondrocytes. Chondrocytes were isolated from cartilage explants and immortalized using 1.0 µg/ml benzo[alpha]pyrene. For 3-dimensional culture, chondrocytes were resuspended in 0.5% low-melt agarose at high density (HD) and cultured for 24 h prior to determining changes in expression profile and morphology. A13/BACii chondrocytes acquired a 'flat' irregular morphology and a foetal-like cell volume (1,509.59 ± 182.04 µm(3)). The human cell line C-20/A4 showed a statistically similar volume and length to A13/BACii. Two-dimensional-cultured A13/BACii expressed elevated levels of type I collagen (col1), reduced levels of type II collagen (col2) compared to freshly isolated chondrocytes and an overall col2 to col1 expression ratio (col2:col1) of 0.11 ± 0.01. Upon 3-dimensional encapsulation, there was a significant rise in col2 expression in both A13/BACii and C-20/A4, suggesting a capacity for redifferentiation in both cell lines with a return of col2:col1 values of A13/BACii to values previously observed in primary chondrocytes. A13/BACii chondrocytes expressed aggrecan, matrix metalloproteinase (MMP)-3, MMP-9 and MMP-13, further supporting indications of the differentiated phenotype. Here we report the creation of a novel chondrocytic cell line and demonstrate its strong potential for redifferentiation upon HD 3-dimensional encapsulation, providing an alternative to conventional dedifferentiated cell lines and primary culture.


Assuntos
Cartilagem Articular/citologia , Condrócitos/citologia , Agrecanas/metabolismo , Animais , Benzo(a)pireno/farmacologia , Biomarcadores/metabolismo , Bioprótese , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/fisiologia , Bovinos , Técnicas de Cultura de Células , Desdiferenciação Celular/efeitos dos fármacos , Desdiferenciação Celular/fisiologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Linhagem Celular Transformada , Condrócitos/efeitos dos fármacos , Condrócitos/fisiologia , Colágeno Tipo II/metabolismo , Metaloproteases/metabolismo , Microscopia Confocal , Fenótipo , Costelas/citologia , Sefarose , Joelho de Quadrúpedes
11.
Pulm Pharmacol Ther ; 21(6): 866-73, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18992358

RESUMO

In this study we set out to ascertain whether melanocortin peptides could be potential therapeutic agents in allergic and non-allergic models of lung inflammation by identifying the receptor(s) involved using a molecular, genetic and pharmacological approach. Western blot analyses revealed expression of the melanocortin receptor (MCR) type 1 and 3 on alveolar macrophages from wild-type mice. Alveolar macrophage incubation, with the selective MC3R agonist [D-TRP(8)]-gamma-MSH and pan-agonist alpha-MSH but not the selective MC1R agonist MS05, led to an increase in cAMP in wild-type macrophages. This increase occurred also in macrophages taken from recessive yellow (e/e; bearing a mutant and inactive MC1R) mice but not from MC3R-null mice. In an allergic model of inflammation, the pan-agonist alpha-MSH and selective MC3R agonist [D-TRP(8)]-gamma-MSH displayed significant attenuation of both eosinophil and lymphocyte accumulation but not IL-5 levels in wild-type and recessive yellow e/e mice. However in MC3R-null mice, alpha-MSH failed to cause a significant inhibition in these parameters, highlighting a preferential role for MC3R in mediating the anti-inflammatory effects of melanocortins in this model. Utilising a non-allergic model of LPS-induced lung neutrophilia, the pan-agonist alpha-MSH and selective MC3R agonist [D-TRP(8)]-gamma-MSH displayed significant attenuation of neutrophil accumulation and inhibition of TNF-alpha release. Thus, this study highlights that melanocortin peptides inhibit leukocyte accumulation in a model of allergic and non-allergic inflammation and this protective effect is associated with activation of the MC3R. The inhibition of leukocyte accumulation is via inhibition of TNF-alpha in the non-allergic model of inflammation but not IL-5 in the allergic model. These data have highlighted the potential for selective MC3R agonists as novel anti-inflammatory therapeutics in lung inflammation.


Assuntos
Pneumonia/metabolismo , Receptor Tipo 3 de Melanocortina/fisiologia , alfa-MSH/farmacologia , gama-MSH/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Eosinófilos/metabolismo , Interleucina-5/química , Linfócitos/metabolismo , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/fisiologia , Melanocortinas/farmacologia , Hormônios Estimuladores de Melanócitos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Peptídeos/farmacologia , Pneumonia/induzido quimicamente , Pneumonia/tratamento farmacológico , Receptor Tipo 1 de Melanocortina/genética , Receptor Tipo 1 de Melanocortina/metabolismo , Receptor Tipo 1 de Melanocortina/fisiologia , Receptor Tipo 3 de Melanocortina/agonistas , Receptor Tipo 3 de Melanocortina/genética , Receptor Tipo 3 de Melanocortina/metabolismo , Fator de Necrose Tumoral alfa/química , alfa-MSH/agonistas , gama-MSH/agonistas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA