Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
EBioMedicine ; 103: 105114, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38640835

RESUMO

BACKGROUND: The innate immune cytokine interleukin (IL)-1 can affect T cell immunity, a critical factor in host defense. In a previous study, we identified a subset of human CD4+ T cells which express IL-1 receptor 1 (IL-1R1). However, the expression of such receptor by viral antigen-specific CD4+ T cells and its biological implication remain largely unexplored. This led us to investigate the implication of IL-1R1 in the development of viral antigen-specific CD4+ T cell responses in humans, including healthy individuals and patients with primary antibody deficiency (PAD), and animals. METHODS: We characterized CD4+ T cells specific for SARS-CoV-2 spike (S) protein, influenza virus, and cytomegalovirus utilizing multiplexed single cell RNA-seq, mass cytometry and flow cytometry followed by an animal study. FINDINGS: In healthy individuals, CD4+ T cells specific for viral antigens, including S protein, highly expressed IL-1R1. IL-1ß promoted interferon (IFN)-γ expression by S protein-stimulated CD4+ T cells, supporting the functional implication of IL-1R1. Following the 2nd dose of COVID-19 mRNA vaccines, S protein-specific CD4+ T cells with high levels of IL-1R1 increased, likely reflecting repetitive antigenic stimulation. The expression levels of IL-1R1 by such cells correlated with the development of serum anti-S protein IgG antibody. A similar finding of increased expression of IL-1R1 by S protein-specific CD4+ T cells was also observed in patients with PAD following COVID-19 mRNA vaccination although the expression levels of IL-1R1 by such cells did not correlate with the levels of serum anti-S protein IgG antibody. In mice immunized with COVID-19 mRNA vaccine, neutralizing IL-1R1 decreased IFN-γ expression by S protein-specific CD4+ T cells and the development of anti-S protein IgG antibody. INTERPRETATION: Our results demonstrate the significance of IL-1R1 expression in CD4+ T cells for the development of viral antigen-specific CD4+ T cell responses, contributing to humoral immunity. This provides an insight into the regulation of adaptive immune responses to viruses via the IL-1 and IL-1R1 interface. FUNDING: Moderna to HJP, National Institutes of Health (NIH) 1R01AG056728 and R01AG055362 to IK and KL2 TR001862 to JJS, Quest Diagnostics to IK and RB, and the Mathers Foundation to RB.


Assuntos
Linfócitos T CD4-Positivos , COVID-19 , SARS-CoV-2 , Transdução de Sinais , Glicoproteína da Espícula de Coronavírus , Humanos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Animais , SARS-CoV-2/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Camundongos , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas contra COVID-19/imunologia , Antígenos Virais/imunologia , Vacinação , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Receptores Tipo I de Interleucina-1/metabolismo , Receptores Tipo I de Interleucina-1/genética , Vacinas de mRNA , Feminino , Interferon gama/metabolismo
2.
Nat Commun ; 14(1): 7852, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030609

RESUMO

Tissue-resident macrophages are critical for tissue homeostasis and repair. We previously showed that dermis-resident macrophages produce CCL24 which mediates their interaction with IL-4+ eosinophils, required to maintain their M2-like properties in the TH1 environment of the Leishmania major infected skin. Here, we show that thymic stromal lymphopoietin (TSLP) and IL-5+ type 2 innate lymphoid cells are also required to maintain dermis-resident macrophages and promote infection. Single cell RNA sequencing reveals the dermis-resident macrophages as the sole source of TSLP and CCL24. Generation of Ccl24-cre mice permits specific labeling of dermis-resident macrophages and interstitial macrophages from other organs. Selective ablation of TSLP in dermis-resident macrophages reduces the numbers of IL-5+ type 2 innate lymphoid cells, eosinophils and dermis-resident macrophages, and ameliorates infection. Our findings demonstrate that dermis-resident macrophages are self-maintained as a replicative niche for L. major by orchestrating localized type 2 circuitries with type 2 innate lymphoid cells and eosinophils.


Assuntos
Imunidade Inata , Leishmaniose Cutânea , Animais , Camundongos , Eosinófilos/metabolismo , Interleucina-5/metabolismo , Linfócitos/metabolismo , Citocinas/metabolismo , Linfopoietina do Estroma do Timo , Macrófagos/metabolismo , Derme/metabolismo
3.
J Allergy Clin Immunol Glob ; 2(4): 100131, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37781651

RESUMO

Background: The immunologic mechanisms underlying pulmonary type 2 inflammation, including the dynamics of eosinophil recruitment to the lungs, still need to be elucidated. Objective: We sought to investigate how IL-13-producing TH2 effector cells trigger eosinophil migration in house dust mite (HDM)-driven allergic pulmonary inflammation. Methods: Multiparameter and molecular profiling of murine lungs with HDM-induced allergy was investigated in the absence of IL-13 signaling by using IL-13Rα1-deficient mice and separately through adoptive transfer of CD4+ T cells from IL-5-deficient mice into TCRα-/- mice before allergic inflammation. Results: We demonstrated through single-cell techniques that HDM-driven pulmonary inflammation displays a profile characterized by TH2 effector cell-induced IL-13-dominated eosinophilic inflammation. Using HDM-sensitized IL-13Rα1-/- mice, we found a marked reduction in the influx of eosinophils into the lungs along with a significant downregulation of both CCL-11 and CCL-24. We further found that eosinophil trafficking to the lung relies on production of IL-13-driven CCL-11 and CCL-24 by fibroblasts and Ly6C+ (so-called classical) monocytes. Moreover, this IL-13-mediated eotaxin-dependent eosinophil influx to the lung tissue required IL-5-induced eosinophilia. Finally, we demonstrated that this IL-13-driven eosinophil-dominated pulmonary inflammation was critical for limiting bystander lung transiting Ascaris parasites in a model of allergy and helminth interaction. Conclusion: Our data suggest that IL-5-dependent allergen-specific TH2 effector cell response and subsequent signaling through the IL-13/IL-13Rα1 axis in fibroblasts and myeloid cells regulate the eotaxin-dependent recruitment of eosinophils to the lungs, with multiple downstream consequences, including bystander control of lung transiting parasitic helminths.

4.
Res Sq ; 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37066418

RESUMO

Tissue-resident macrophages (TRMs) are critical for tissue homeostasis/repair. We previously showed that dermal TRMs produce CCL24 (eotaxin2) which mediates their interaction with IL-4 producing eosinophils, required to maintain their number and M2-like properties in the TH1 environment of the Leishmania major infected skin. Here, we unveil another layer of TRM self-maintenance involving their production of TSLP, an alarmin typically characterized as epithelial cell-derived. Both TSLP signaling and IL-5+ innate lymphoid cell 2 (ILC2s) were shown to maintain the number of dermal TRMs and promote infection. Single cell RNA sequencing identified the dermal TRMs as the sole source of TSLP and CCL24. Development of Ccl24-cre mice permitted specific labeling of dermal TRMs, as well as interstitial TRMs from other organs. Genetic ablation of TSLP from dermal TRMs reduced the number of dermal TRMs, and disease was ameliorated. Thus, by orchestrating localized type 2 circuitries with ILC2s and eosinophils, dermal TRMs are self-maintained as a replicative niche for L. major.

5.
PLoS Pathog ; 18(11): e1010502, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36318581

RESUMO

The atypical IκB family member Bcl3 associates with p50/NF-κB1 or p52/NF-κB2 homodimers in the nucleus, and positively or negatively modulates transcription in a context-dependent manner. In mice lacking Bcl3 globally or specifically in CD11c+ cells, we previously reported that Toxoplasma gondii infection is uniformly fatal and is associated with an impaired Th1 immune response. Since Bcl3 expression in dendritic cells (DC) is pivotal for antigen presentation and since classical DCs (cDC) are major antigen presenting cells, we investigated the role of Bcl3 specifically in cDCs in vivo by crossing Zbtb46 cre mice with Bcl3flx/flx mice. Bcl3flx/flx Zbtb46 cre mice were as susceptible to lethal T. gondii infection as total Bcl3-/- mice and generated poor Th1 immune responses. Consistent with this, compared to wildtype controls, splenic Xcr1+ Bcl3-deficient cDC1 cells were defective in presenting Ova antigen to OT-I cells both for Ova257-264 peptide and after infection with Ovalbumin-expressing T. gondii. Moreover, splenic CD4+ and CD8+ T cells from infected Bcl3flx/flx Zbtb46 cre mice exhibited decreased T. gondii-specific priming as revealed by both reduced cytokine production and reduced T. gondii-specific tetramer staining. In vitro differentiation of cDCs from bone marrow progenitors also revealed Bcl3-dependent cDC-specific antigen-presentation activity. Consistent with this, splenocyte single cell RNA seq (scRNAseq) in infected mice revealed Bcl3-dependent expression of genes involved in antigen processing in cDCs. We also identified by scRNAseq, a unique Bcl3-dependent hybrid subpopulation of Zbtb46+ DCs co-expressing the monocyte/macrophage transcription factor Lysozyme M. This subpopulation exhibited Bcl3-dependent expansion after infection. Likewise, by flow cytometry we identified two T. gondii-induced hybrid subpopulations of Bcl3-dependent cDC1 and cDC2 cells both expressing monocyte/macrophage markers, designated as icDC1 and icDC2. Together, our results indicate that Bcl3 in classical DCs is a major determinant of protective T cell responses and survival in T. gondii-infection.


Assuntos
Proteína 3 do Linfoma de Células B , Toxoplasma , Toxoplasmose , Animais , Camundongos , Linfócitos T CD8-Positivos , Células Dendríticas , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Toxoplasma/metabolismo , Toxoplasmose/metabolismo , Proteína 3 do Linfoma de Células B/metabolismo
6.
J Nanosci Nanotechnol ; 20(11): 6679-6682, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32604496

RESUMO

The phenomenon by which the efficiency decreases rapidly with the increase in luminance or current density in organic light-emitting diodes is termed efficiency roll-off. In particular, phosphorescent organic light-emitting diodes are known to have higher efficiency, but tend to exhibit higher efficiency roll-off compared with fluorescent organic light-emitting diodes. In this study, we report the efficiency roll-off characteristics of double-dopant phosphorescent organic light-emitting diodes. The double-dopant phosphorescent organic light-emitting diodes showed significantly lower efficiency roll-off compared with single-dopant phosphorescent organic light-emitting diodes. (The double-dopant device showed a 2.5-fold decrease in efficiency roll-off compared with the single-dopant device at 50 mA/cm², and a 1.6-fold decrease in efficiency roll-off at 100 mA/cm²).

7.
Sci Immunol ; 5(46)2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32276966

RESUMO

Tissue-resident macrophages (TRMs) maintain tissue homeostasis, but they can also provide a replicative niche for intracellular pathogens such as Leishmania How dermal TRMs proliferate and maintain their M2 properties even in the strong TH1 environment of the L. major infected dermis is not clear. Here, we show that, in infected mice lacking IL-4/13 from eosinophils, dermal TRMs shifted to a proinflammatory state, their numbers declined, and disease was attenuated. Intravital microscopy revealed a rapid infiltration of eosinophils followed by their tight interaction with dermal TRMs. IL-4-stimulated dermal TRMs, in concert with IL-10, produced a large amount of CCL24, which functioned to amplify eosinophil influx and their interaction with dermal TRMs. An intraperitoneal helminth infection model also demonstrated a requirement for eosinophil-derived IL-4 to maintain tissue macrophages through a CCL24-mediated amplification loop. CCL24 secretion was confined to resident macrophages in other tissues, implicating eosinophil-TRM cooperative interactions in diverse inflammatory settings.


Assuntos
Quimiocina CCL24/imunologia , Eosinófilos/imunologia , Interleucina-4/imunologia , Leishmaniose Cutânea/imunologia , Macrófagos/imunologia , Pele/imunologia , Animais , Interleucina-4/deficiência , Macrófagos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pele/citologia
8.
Mucosal Immunol ; 13(2): 216-229, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31772323

RESUMO

Mononuclear phagocytes are a heterogeneous population of leukocytes essential for immune homeostasis that develop tissue-specific functions due to unique transcriptional programs driven by local microenvironmental cues. Single cell RNA sequencing (scRNA-seq) of colonic myeloid cells from specific pathogen free (SPF) and germ-free (GF) C57BL/6 mice revealed extensive heterogeneity of both colon macrophages (MPs) and dendritic cells (DCs). Modeling of developmental pathways combined with inference of gene regulatory networks indicate two major trajectories from common CCR2+ precursors resulting in colon MP populations with unique transcription factors and downstream target genes. Compared to SPF mice, GF mice had decreased numbers of total colon MPs, as well as selective proportional decreases of two major CD11c+CD206intCD121b+ and CD11c-CD206hiCD121b- colon MP populations, whereas DC numbers and proportions were not different. Importantly, these two major colon MP populations were clearly distinct from other colon MP populations regarding their gene expression profile, localization within the lamina propria (LP) and ability to phagocytose macromolecules from the blood. These data uncover the diversity of intestinal myeloid cell populations at the molecular level and highlight the importance of microbiota on the unique developmental as well as anatomical and functional fates of colon MPs.


Assuntos
Colo/imunologia , Células Dendríticas/imunologia , Macrófagos/imunologia , Células Mieloides/fisiologia , Animais , Antígeno CD11c/metabolismo , Diferenciação Celular , Células Cultivadas , Ontologia Genética , Redes Reguladoras de Genes , Homeostase , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Receptor de Manose , Lectinas de Ligação a Manose/genética , Lectinas de Ligação a Manose/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fagocitose/genética , Fenótipo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Análise de Sequência de RNA , Análise de Célula Única , Transcriptoma
9.
Mucosal Immunol ; 12(1): 85-96, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30087442

RESUMO

Despite studies indicating the effects of IL-21 signaling in intestinal inflammation, its roles in intestinal homeostasis and infection are not yet clear. Here, we report potent effects of commensal microbiota on the phenotypic manifestations of IL-21 receptor deficiency. IL-21 is produced highly in the small intestine and appears to be critical for mounting an IgA response against atypical commensals such as segmented filamentous bacteria and Helicobacter, but not to the majority of commensals. In the presence of these atypical commensals, IL-21R-deficient mice exhibit reduced numbers of germinal center and IgA+ B cells and expression of activation-induced cytidine deaminase in Peyer's patches as well as a significant decrease in small intestine IgA+ plasmablasts and plasma cells, leading to higher bacterial burdens and subsequent expansion of Th17 and Treg cells. These microbiota-mediated secondary changes in turn enhance T cell responses to an oral antigen and strikingly dampen Citrobacter rodentium-induced immunopathology, demonstrating a complex interplay between IL-21-mediated mucosal immunity, microbiota, and pathogens.


Assuntos
Formas Bacterianas Atípicas/fisiologia , Linfócitos B/fisiologia , Citrobacter rodentium/fisiologia , Infecções por Enterobacteriaceae/imunologia , Helicobacter/fisiologia , Imunoglobulina A/metabolismo , Mucosa Intestinal/imunologia , Intestino Delgado/imunologia , Receptores de Interleucina-21/genética , Animais , Carga Bacteriana , Diferenciação Celular , Células Cultivadas , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Homeostase , Humanos , Imunidade Humoral , Imunidade nas Mucosas , Mucosa Intestinal/microbiologia , Intestino Delgado/microbiologia , Camundongos , Camundongos Knockout , Receptores de Interleucina-21/metabolismo , Linfócitos T Reguladores/imunologia , Células Th17/imunologia
10.
ACS Nano ; 10(11): 10143-10151, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27809471

RESUMO

In this study, we demonstrate a viable and promising optical engineering technique enabling the development of high-performance plasmonic organic photovoltaic devices. Laser interference lithography was explored to fabricate metal nanodot (MND) arrays with elaborately controlled dot size as well as periodicity, allowing spectral overlap between the absorption range of the active layers and the surface plasmon band of MND arrays. MND arrays with ∼91 nm dot size and ∼202 nm periodicity embedded in a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) hole transport layer remarkably enhanced the average power conversion efficiency (PCE) from 7.52% up to 10.11%, representing one of the highest PCE and degree of enhancement (∼34.4%) levels compared to the pristine device among plasmonic organic photovoltaics reported to date. The plasmonic enhancement mechanism was investigated by both optical and electrical analyses using finite difference time domain simulation and conductive atomic force microscopy studies.

11.
Korean J Parasitol ; 53(4): 371-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26323834

RESUMO

Trichomonas vaginalis; induces proinflammation in cervicovaginal mucosal epithelium. To investigate the signaling pathways in TNF-α production in cervical mucosal epithelium after T. vaginalis infection, the phosphorylation of PI3K/AKT and MAPK pathways were evaluated in T. vaginalis-infected SiHa cells in the presence and absence of specific inhibitors. T. vaginalis increased TNF-α production in SiHa cells, in a parasite burden-dependent and incubation time-dependent manner. In T. vaginalis-infected SiHa cells, AKT, ERK1/2, p38 MAPK, and JNK were phosphorylated from 1 hr after infection; however, the phosphorylation patterns were different from each other. After pretreatment with inhibitors of the PI3K/AKT and MAPK pathways, TNF-α production was significantly decreased compared to the control; however, TNF-α reduction patterns were different depending on the type of PI3K/MAPK inhibitors. TNF-α production was reduced in a dose-dependent manner by treatment with wortmannin and PD98059, whereas it was increased by SP600125. These data suggested that PI3K/AKT and MAPK signaling pathways are important in regulation of TNF-α production in cervical mucosal epithelial SiHa cells. However, activation patterns of each pathway were different from the types of PI3K/MAPK pathways.


Assuntos
Colo do Útero/parasitologia , Células Epiteliais/enzimologia , Sistema de Sinalização das MAP Quinases , Mucosa/enzimologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Vaginite por Trichomonas/enzimologia , Trichomonas vaginalis/fisiologia , Fator de Necrose Tumoral alfa/metabolismo , Linhagem Celular , Colo do Útero/enzimologia , Colo do Útero/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/parasitologia , Feminino , Humanos , Mucosa/metabolismo , Mucosa/parasitologia , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Vaginite por Trichomonas/genética , Vaginite por Trichomonas/metabolismo , Vaginite por Trichomonas/parasitologia , Fator de Necrose Tumoral alfa/genética
12.
ACS Appl Mater Interfaces ; 7(8): 4778-83, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25668131

RESUMO

Layer-by-layer (LBL) assembly, which uses electronic and ionic intermolecular bonding under nonvacuum conditions, is a promising technology for fabricating gas barrier films owing to its simple processing and easy formation of a multilayer structure. In this research, nanoclay-polymer multilayers of Na(+)-montmorillonite (Na-MMT) were fabricated. Particularly, the addition of AuCl3 on fabricated MMT layers caused a reaction with the surface silanol functional groups (Si-O-H) of the MMT platelets, resulting in the formation of Au2O3 on the MMT-polymer multilayers. The Au2O3 filled the vacancies between the MMT platelets and linked the MMT platelets together, thus forming a gas barrier film that reduced the water vapor transmission rate (WVTR) to 3.2 × 10(-3) g m(-2) day(-1). AuCl3-treated MMT-polymer multilayers thus have the potential to be utilized for manufacturing gas barrier films for flexible electronics on a large scale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA