Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pediatr Rheumatol Online J ; 22(1): 76, 2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39155376

RESUMO

OBJECTIVE: This study aimed to develop a novel scoring system utilizing circulating interleukin (IL) levels to predict resistance to intravenous immunoglobulin (IVIG) in Chinese patients with Kawasaki disease (KD). We further compared this scoring system against six previously established scoring methods to evaluate its predictive performance. METHODS: A retrospective analysis was conducted on KD patients who were treated at the cardiovascular medical ward of our institution from January 2020 to December 2022. Six scoring systems (Egami, Formosa, Harada, Kobayashi, Lan and Yang) were analyzed, and a new scoring system was developed based on our data. RESULTS: In our study, 521 KD patients were recruited, 42 of whom (8.06%) were identified as resistant to IVIG. Our study indicated that IVIG-resistant KD patients were at an increased risk for the development of coronary arterial lesions (CALs) (P = 0.001). The evaluation of IVIG resistance using various scoring systems revealed differing levels of sensitivity and specificity, as follows: Egami (38.10% and 88.52%), Formosa (95.24% and 41.13%), Harada (78.57% and 43.22%), Kobayashi (66.67% and 74.95%), Lan (66.67% and 73.49%), and Yang (69.05% and 77.24%). Our novel scoring system utilizing sIL-2R demonstrated the highest sensitivity and specificity of 69.29% and 83.91%, respectively, and calibration curves indicated a favorable predictive accuracy of the model. CONCLUSION: Our newly developed scoring system utilizing sIL-2R demonstrated superior predictive performance in identifying IVIG resistance among Chinese patients with KD.


Assuntos
Resistência a Medicamentos , Imunoglobulinas Intravenosas , Síndrome de Linfonodos Mucocutâneos , Humanos , Síndrome de Linfonodos Mucocutâneos/tratamento farmacológico , Imunoglobulinas Intravenosas/uso terapêutico , Estudos Retrospectivos , Masculino , Feminino , Pré-Escolar , Lactente , China , Receptores de Interleucina-2/sangue , Criança , Valor Preditivo dos Testes , População do Leste Asiático
2.
Eur J Med Res ; 29(1): 413, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39127654

RESUMO

BACKGROUND: The pathogenesis of noncystic fibrosis bronchiectasis in adults is complex, and the relevant molecular mechanisms remain unclear. In this study, we constructed a panoramic map of bronchiectasis mRNA, explored the potential molecular mechanisms, and identified potential therapeutic targets, thus providing a new clinical perspective for the preventive management of bronchiectasis and its acute exacerbation. METHODS: The mRNA profiles of peripheral blood and bronchiectasis tissues were obtained through transcriptome sequencing and public databases, and bioinformatics methods were used to screen for differentially expressed genes (DEGs). The DEGs were then subjected to biological function and pathway analyses. Some DEGs were validated using a real-time quantitative polymerase chain reaction (RT-qPCR) in peripheral blood. Spearman's correlation analysis was used to analyse the correlation between DEGs and clinical indicators. RESULTS: Based on transcriptome sequencing and public databases, the mRNA profile of bronchiectasis was determined. DEGs were obtained from the peripheral blood sequencing dataset (985 DEGs), tissue sequencing dataset (2919 DEGs), and GSE97258 dataset (1083 DEGs). Bioinformatics analysis showed that upregulated DEGs had enriched neutrophil-related pathways, and downregulated DEGs had enriched ribosome-related pathways. RT-qPCR testing confirmed the upregulated expression of VCAN, SESTD1, SLC12A1, CD177, IFI44L, SIGLEC1, and RSAD2 in bronchiectasis. These genes were related to many clinical parameters, such as neutrophils, C-reactive protein, and procalcitonin (P < 0.05). CONCLUSIONS: Transcriptomic methods were used to construct a panoramic map of bronchiectasis mRNA expression. The findings showed that neutrophil activation, chronic inflammation, immune regulation, impaired ribosomal function, oxidative phosphorylation, and energy metabolism disorders are important factors in the development of bronchiectasis. VCAN, SESTD1, SLC12A1, CD177, IFI44L, SIGLEC1, and RSAD2 may play important roles in the pathogenesis of bronchiectasis and are potential therapeutic targets.


Assuntos
Bronquiectasia , RNA Mensageiro , Humanos , Bronquiectasia/genética , RNA Mensageiro/genética , Feminino , Masculino , Perfilação da Expressão Gênica/métodos , Adulto , Biologia Computacional/métodos , Pessoa de Meia-Idade , Transcriptoma/genética
3.
Anal Chem ; 96(29): 11915-11922, 2024 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-39007441

RESUMO

G-quadruplex structures within the nuclear genome (nG4) is an important regulatory factor, while the function of G4 in the mitochondrial genome (mtG4) still needs to be explored, especially in human sperms. To gain a better understanding of the relationship between mtG4 and mitochondrial function, it is crucial to develop excellent probes that can selectively visualize and track mtG4 in both somatic cells and sperms. Herein, based on our previous research on purine frameworks, we attempted for the first time to extend the conjugated structure from the C-8 site of purine skeleton and discovered that the purine derivative modified by the C-8 aldehyde group is an ideal platform for constructing near-infrared probes with extremely large Stokes shift (>220 nm). Compared with the compound substituted with methylpyridine (PAP), the molecule substituted with methylthiazole orange (PATO) showed better G4 recognition ability, including longer emission (∼720 nm), more significant fluorescent enhancement (∼67-fold), lower background, and excellent photostability. PATO exhibited a sensitive response to mtG4 variation in both somatic cells and human sperms. Most importantly, PATO helped us to discover that mtG4 was significantly increased in cells with mitochondrial respiratory chain damage caused by complex I inhibitors (6-OHDA and rotenone), as well as in human sperms that suffer from oxidative stress. Altogether, our study not only provides a novel ideal molecular platform for constructing high-performance probes but also develops an effective tool for studying the relationship between mtG4 and mitochondrial function in both somatic cells and human sperms.


Assuntos
Corantes Fluorescentes , Purinas , Humanos , Purinas/química , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Doenças Mitocondriais/metabolismo , Regulação para Cima , Genoma Mitocondrial , Quadruplex G , Mitocôndrias/metabolismo , Raios Infravermelhos , Células HeLa
4.
Nat Commun ; 15(1): 5323, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909053

RESUMO

Bioethanol is a sustainable energy alternative and can contribute to global greenhouse-gas emission reductions by over 60%. Its industrial production faces various bottlenecks, including sub-optimal efficiency resulting from bacteria. Broad-spectrum removal of these contaminants results in negligible gains, suggesting that the process is shaped by ecological interactions within the microbial community. Here, we survey the microbiome across all process steps at two biorefineries, over three timepoints in a production season. Leveraging shotgun metagenomics and cultivation-based approaches, we identify beneficial bacteria and find improved outcome when yeast-to-bacteria ratios increase during fermentation. We provide a microbial gene catalogue which reveals bacteria-specific pathways associated with performance. We also show that Limosilactobacillus fermentum overgrowth lowers production, with one strain reducing yield by ~5% in laboratory fermentations, potentially due to its metabolite profile. Temperature is found to be a major driver for strain-level dynamics. Improved microbial management strategies could unlock environmental and economic gains in this US $ 60 billion industry enabling its wider adoption.


Assuntos
Bactérias , Etanol , Fermentação , Etanol/metabolismo , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Microbiota/fisiologia , Biocombustíveis , Metagenômica , Microbiologia Industrial/métodos , Temperatura
5.
BMC Musculoskelet Disord ; 25(1): 478, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890605

RESUMO

BACKGROUND: The aim of the study was to investigate the muscle differences in children with osteogenesis imperfecta (OI) using opportunistic low-dose chest CT and to compare different methods for the segmentation of muscle in children. METHODS: This single center retrospective study enrolled children with OI and controls undergoing opportunistic low-dose chest CT obtained during the COVID pandemic. From the CT images, muscle size (cross-sectional area) and density (mean Hounsfield Units [HU]) of the trunk muscles were measured at the mid-T4 and the mid-T10 level using two methods, the fixed thresholds and the Gaussian mixture model. The Bland-Altman method was also used to compute the strength of agreement between two methods. Comparison of muscle results between OI and controls were analyzed with Student t tests. RESULTS: 20 children with OI (mean age, 9.1 ± 3.3 years, 15 males) and 40 age- and sex-matched controls were enrolled. Mean differences between two methods were good. Children with OI had lower T4 and T10 muscle density than controls measured by the fixed thresholds (41.2 HU vs. 48.0 HU, p < 0.01; 37.3 HU vs. 45.9 HU, p < 0.01). However, children with OI had lower T4 muscle size, T4 muscle density, T10 muscle size and T10 muscle density than controls measured by the Gaussian mixture model (110.9 vs. 127.2 cm2, p = 0.03; 44.6 HU vs. 51.3 HU, p < 0.01; 72.6 vs. 88.0 cm2, p = 0.01; 41.6 HU vs. 50.3 HU, p < 0.01, respectively). CONCLUSIONS: Children with OI had lower trunk muscle density indicating that OI might also impair muscle quality. Moreover, the fixed thresholds may not be suitable for segmentation of muscle in children.


Assuntos
Músculo Esquelético , Osteogênese Imperfeita , Tomografia Computadorizada por Raios X , Humanos , Osteogênese Imperfeita/diagnóstico por imagem , Masculino , Feminino , Criança , Estudos Retrospectivos , Estudos de Casos e Controles , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia , Adolescente , COVID-19/diagnóstico por imagem , Doses de Radiação , Pré-Escolar
6.
Cell Mol Life Sci ; 81(1): 256, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866991

RESUMO

Pulmonary hypertension (PH) is characterized by vascular remodeling predominantly driven by a phenotypic switching in pulmonary artery smooth muscle cells (PASMCs). However, the underlying mechanisms for this phenotypic alteration remain incompletely understood. Here, we identified that RNA methyltransferase METTL3 is significantly elevated in the lungs of hypoxic PH (HPH) mice and rats, as well as in the pulmonary arteries (PAs) of HPH rats. Targeted deletion of Mettl3 in smooth muscle cells exacerbated hemodynamic consequences of hypoxia-induced PH and accelerated pulmonary vascular remodeling in vivo. Additionally, the absence of METTL3 markedly induced phenotypic switching in PASMCs in vitro. Mechanistically, METTL3 depletion attenuated m6A modification and hindered the processing of pri-miR-143/145, leading to a downregulation of miR-143-3p and miR-145-5p. Inhibition of hnRNPA2B1, an m6A mediator involved in miRNA maturation, similarly resulted in a significant reduction of miR-143-3p and miR-145-5p. We demonstrated that miR-145-5p targets Krüppel-like factor 4 (KLF4) and miR-143-3p targets fascin actin-bundling protein 1 (FSCN1) in PASMCs. The decrease of miR-145-5p subsequently induced an upregulation of KLF4, which in turn suppressed miR-143/145 transcription, establishing a positive feedback circuit between KLF4 and miR-143/145. This regulatory circuit facilitates the persistent suppression of contractile marker genes, thereby sustaining PASMC phenotypic switch. Collectively, hypoxia-induced upregulation of METTL3, along with m6A mediated regulation of miR-143/145, might serve as a protective mechanism against phenotypic switch of PASMCs. Our results highlight a potential therapeutic strategy targeting m6A modified miR-143/145-KLF4 loop in the treatment of PH.


Assuntos
Adenosina , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like , Metiltransferases , MicroRNAs , Miócitos de Músculo Liso , Artéria Pulmonar , Fator 4 Semelhante a Kruppel/metabolismo , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Artéria Pulmonar/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Miócitos de Músculo Liso/metabolismo , Camundongos , Adenosina/análogos & derivados , Adenosina/metabolismo , Metiltransferases/metabolismo , Metiltransferases/genética , Ratos , Fenótipo , Masculino , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Músculo Liso Vascular/metabolismo , Camundongos Endogâmicos C57BL , Remodelação Vascular/genética , Ratos Sprague-Dawley , Humanos
7.
Ecotoxicol Environ Saf ; 281: 116613, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38908057

RESUMO

Exposure to carbon disulfide (CS2) is a recognized risk factor in the pathogenesis of Parkinson's disease, yet the underlying mechanisms of deleterious effects on mitochondrial integrity have remained elusive. Here, through establishing CS2 exposure models in rat and SH-SY5Y cells, we demonstrated that highly expressed α-synuclein (α-Syn) is transferred to mitochondria via membrane proteins such as Tom20 and leads to mitochondrial dysfunction and mitochondrial oxidative stress, which ultimately causes neuronal injury. We first found significant mitochondrial damage and oxidative stress in CS2-exposed rat midbrain and SH-SY5Y cells and showed that mitochondrial oxidative stress was the main factor of mitochondrial damage by Mitoquinone intervention. Further experiments revealed that CS2 exposure led to the accumulation of α-Syn in mitochondria and that α-Syn co-immunoprecipitated with mitochondrial membrane proteins. Finally, the use of an α-Syn inhibitor (ELN484228) and small interfering RNA (siRNA) effectively mitigated the accumulation of α-Syn in neurons, as well as the inhibition of mitochondrial membrane potential, caused by CS2 exposure. In conclusion, our study identifies the translocation of α-Syn to mitochondria and the impairment of mitochondrial function, which has important implications for the broader understanding and treatment of neurodegenerative diseases associated with environmental toxins.


Assuntos
Dissulfeto de Carbono , Mitocôndrias , Estresse Oxidativo , alfa-Sinucleína , alfa-Sinucleína/metabolismo , Dissulfeto de Carbono/toxicidade , Mitocôndrias/efeitos dos fármacos , Animais , Ratos , Estresse Oxidativo/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Ratos Sprague-Dawley , Masculino , Linhagem Celular Tumoral , Mesencéfalo/efeitos dos fármacos , Mesencéfalo/metabolismo
8.
Int J Biol Macromol ; 270(Pt 2): 132459, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38763254

RESUMO

Nuclear receptors (NRs) are ligand-regulated transcription factors that are important for the normal growth and development of insects. However, systematic function analysis of NRs in the molting process of Lasioderma serricorne has not been reported. In this study, we identified and characterized 16 NR genes from L. serricorne. Spatiotemporal expression analysis revealed that six NRs were mainly expressed in 3-d-old 4th-instar larvae; five NRs were primarily expressed in 5-d-old adults and four NRs were predominately expressed in prepupae. All the NRs were highly expressed in epidermis, fat body and foregut. RNA interference (RNAi) experiments revealed that knockdown of 15 NRs disrupted the larva-pupa-adult transitions and caused 64.44-100 % mortality. Hematoxylin-eosin staining showed that depletion of 12 NRs prevented the formation of new cuticle and disrupted apolysis of old cuticle. Silencing of LsHR96, LsSVP and LsE78 led to newly formed cuticle that was thinner than the controls. The 20E titer and chitin content significantly decreased by 17.67-95.12 % after 15 NR dsRNA injection and the gene expression levels of 20E synthesis genes and chitin metabolism genes were significantly reduced. These results demonstrated that 15 NR genes are essential for normal molting and metamorphosis of L. serricorne by regulating 20E synthesis and chitin metabolism.


Assuntos
Besouros , Regulação da Expressão Gênica no Desenvolvimento , Metamorfose Biológica , Muda , Receptores Citoplasmáticos e Nucleares , Animais , Muda/genética , Metamorfose Biológica/genética , Besouros/genética , Besouros/crescimento & desenvolvimento , Besouros/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Quitina/metabolismo , Interferência de RNA , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Filogenia , Ecdisterona/metabolismo
9.
Cell Mol Biol Lett ; 29(1): 69, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741032

RESUMO

BACKGROUND: Pulmonary hypertension (PH) is a progressive disease characterized by pulmonary vascular remodeling. Increasing evidence indicates that endothelial-to-mesenchymal transition (EndMT) in pulmonary artery endothelial cells (PAECs) is a pivotal trigger initiating this remodeling. However, the regulatory mechanisms underlying EndMT in PH are still not fully understood. METHODS: Cytokine-induced hPAECs were assessed using RNA methylation quantification, qRT-PCR, and western blotting to determine the involvement of N6-methyladenosine (m6A) methylation in EndMT. Lentivirus-mediated silencing, overexpression, tube formation, and wound healing assays were utilized to investigate the function of METTL3 in EndMT. Endothelial-specific gene knockout, hemodynamic measurement, and immunostaining were performed to explore the roles of METTL3 in pulmonary vascular remodeling and PH. RNA-seq, RNA Immunoprecipitation-based qPCR, mRNA stability assay, m6A mutation, and dual-luciferase assays were employed to elucidate the mechanisms of RNA methylation in EndMT. RESULTS: The global levels of m6A and METTL3 expression were found to decrease in TNF-α- and TGF-ß1-induced EndMT in human PAECs (hPAECs). METTL3 inhibition led to reduced endothelial markers (CD31 and VE-cadherin) and increased mesenchymal markers (SM22 and N-cadherin) as well as EndMT-related transcription factors (Snail, Zeb1, Zeb2, and Slug). The endothelial-specific knockout of Mettl3 promoted EndMT and exacerbated pulmonary vascular remodeling and hypoxia-induced PH (HPH) in mice. Mechanistically, METTL3-mediated m6A modification of kruppel-like factor 2 (KLF2) plays a crucial role in the EndMT process. KLF2 overexpression increased CD31 and VE-cadherin levels while decreasing SM22, N-cadherin, and EndMT-related transcription factors, thereby mitigating EndMT in PH. Mutations in the m6A site of KLF2 mRNA compromise KLF2 expression, subsequently diminishing its protective effect against EndMT. Furthermore, KLF2 modulates SM22 expression through direct binding to its promoter. CONCLUSIONS: Our findings unveil a novel METTL3/KLF2 pathway critical for protecting hPAECs against EndMT, highlighting a promising avenue for therapeutic investigation in PH.


Assuntos
Adenosina , Células Endoteliais , Transição Epitelial-Mesenquimal , Hipertensão Pulmonar , Fatores de Transcrição Kruppel-Like , Metiltransferases , Animais , Humanos , Camundongos , Adenosina/análogos & derivados , Adenosina/metabolismo , Caderinas/metabolismo , Caderinas/genética , Células Cultivadas , Células Endoteliais/metabolismo , Transição Epitelial-Mesenquimal/genética , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Metilação , Metiltransferases/metabolismo , Metiltransferases/genética , Camundongos Endogâmicos C57BL , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Remodelação Vascular/genética
10.
Microorganisms ; 12(5)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38792780

RESUMO

The degradation of farmland in China underscores the need for developing and utilizing saline-alkali soil. Soil health relies on microbial activity, which aids in the restoration of the land's ecosystem, and hence it is important to understand microbial diversity. In the present study, two Gram-stain-positive strains HR 1-10T and J-A-003T were isolated from saline-alkali soil. Preliminary analysis suggested that these strains could be a novel species. Therefore, the taxonomic positions of these strains were evaluated using polyphasic analysis. Phylogenetic and 16S rRNA gene sequence analysis indicated that these strains should be assigned to the genus Halalkalibacter. Cell wall contained meso-2,6-diaminopimelic acid. The polar lipids present in both strains were diphosphatidyl-glycerol, phosphatidylglycerol, and an unidentified phospholipid. The major fatty acids (>10%) were anteiso-C15:0, C16:0 and iso-C15:0. Average nucleotide identity and digital DNA#x2013;DNA hybridization values were below the threshold values (95% and 70%, respectively) for species delineation. Based on the above results, the strains represent two novel species of the genus Halalkalibacter, for which the names Halalkalibacter flavus sp. nov., and Halalkalibacter lacteus sp. nov., are proposed. The type strains are HR 1-10T (=GDMCC 1.2946T = MCCC 1K08312T = JCM 36285T), and J-A-003T (=GDMCC 1.2949T = MCCC 1K08417T = JCM 36286T).

11.
Pest Manag Sci ; 80(9): 4543-4552, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38738474

RESUMO

BACKGROUND: MicroRNA (miRNA) pathway genes have been widely reported to participate in several physiological events in insect lifecycles. The cigarette beetle Lasioderma serricorne is an economically important storage pest worldwide. However, the functions of miRNA pathway genes in L. serricorne remain to be clarified. Herein, we investigated the function of molting and reproduction of the miRNA pathway in L. serricorne. RESULTS: LsDicer-1, LsArgonaute-1, LsLoquacious and LsExportin-5 were universally expressed in adults, whereas LsPasha and LsDrosha were mainly expressed in the pupae. The genes presented different patterns in various tissues. Silencing of LsDicer-1, LsArgonaute-1, LsDrosha and LsExportin-5 resulted in a high proportion of wing deformities and molting defects. Silencing of LsDicer-1, LsArgonaute-1, LsPasha and LsLoquacious affected the development of the ovary and the maturation of oocytes, resulting in a significant decrease in fecundity. Further investigation revealed that the decreases in LsDicer-1 and LsArgonaute-1 expression destroyed follicular epithelia and delayed vitellogenesis and oocyte development. In addition, the expression levels of several miRNAs (let-7, let-7-5p, miR-8-3p, miR-8-5p, miR-9c-5p, miR-71, miR-252-5p, miR-277-3p, miR-263b and Novel-miR-50) were decreased significantly after knockdown of these miRNA pathway core genes, indicating that they played important roles in regulating miRNA-mediated gene expression. CONCLUSION: The results indicate that miRNA pathway genes play important roles in the molting, ovarian development and female fecundity of L. serricorne, and thus are potentially suitable target genes for developing an RNAi strategy against a major pest of stored products. © 2024 Society of Chemical Industry.


Assuntos
Besouros , MicroRNAs , Muda , Reprodução , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Muda/genética , Besouros/genética , Besouros/fisiologia , Besouros/crescimento & desenvolvimento , Reprodução/genética , Feminino , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Genes de Insetos , Masculino
12.
Plants (Basel) ; 13(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38592844

RESUMO

This research investigated the synthesis of biochar through the direct pyrolysis of pre-roasted sunflower seed shells (SFS) and peanut shells (PNS) and compared their application for the effective removal of textile dyes from wastewater. Biochar prepared at 900 °C (SFS900 and PNS900) showed the highest adsorption capacity, which can be attributed to the presence of higher nitrogen content and graphite-like structures. CHNS analysis revealed that PNS900 exhibited an 11.4% higher carbon content than SFS900, which enhanced the environmental stability of PNS biochar. Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analyses of the produced biochar indicated the degradation of cellulosic and lignin moieties. X-ray photoelectron spectroscopy (XPS) revealed a 13.8% and 22.6% increase in C-C/C=C mass concentrations in the SFS900 and PNS900, respectively, and could be attributed to the condensation of polyaromatic structures. Batch experiments for dye removal demonstrated that irrespective of dye species, PNS900 exhibited superior dye removal efficiency compared to SFS900 at similar dosages. In addition to H-bonding and electrostatic interactions, the presence of pyridinic-N and graphitic-N can play a vital role in enhancing Lewis acid-base and π-π EDA interactions. The results can provide valuable insights into the biochar-dye interaction mechanisms.

13.
Toxicology ; 504: 153812, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38653376

RESUMO

Neurotoxic organophosphorus compounds can induce a type of delayed neuropathy in humans and sensitive animals, known as organophosphorus-induced delayed neuropathy (OPIDN). OPIDN is characterized by axonal degeneration akin to Wallerian-like degeneration, which is thought to be caused by increased intra-axonal Ca2+ concentrations. This study was designed to investigate that deregulated cytosolic Ca2+ may function downstream of mitodysfunction in activating Wallerian-like degeneration and necroptosis in OPIDN. Adult hens were administrated a single dosage of 750 mg/kg tri-ortho-cresyl phosphate (TOCP), and then sacrificed at 1 day, 5 day, 10 day and 21 day post-exposure, respectively. Sciatic nerves and spinal cords were examined for pathological changes and proteins expression related to Wallerian-like degeneration and necroptosis. In vitro experiments using differentiated neuro-2a (N2a) cells were conducted to investigate the relationship among mitochondrial dysfunction, Ca2+ influx, axonal degeneration, and necroptosis. The cells were co-administered with the Ca2+-chelator BAPTA-AM, the TRPA1 channel inhibitor HC030031, the RIPK1 inhibitor Necrostatin-1, and the mitochondrial-targeted antioxidant MitoQ along with TOCP. Results demonstrated an increase in cytosolic calcium concentration and key proteins associated with Wallerian degeneration and necroptosis in both in vivo and in vitro models after TOCP exposure. Moreover, co-administration with BATPA-AM or HC030031 significantly attenuated the loss of NMNAT2 and STMN2 in N2a cells, as well as the upregulation of SARM1, RIPK1 and p-MLKL. In contrast, Necrostatin-1 treatment only inhibited the TOCP-induced elevation of p-MLKL. Notably, pharmacological protection of mitochondrial function with MitoQ effectively alleviated the increase in intracellular Ca2+ following TOCP and mitigated axonal degeneration and necroptosis in N2a cells, supporting mitochondrial dysfunction as an upstream event of the intracellular Ca2+ imbalance and neuronal damage in OPIDN. These findings suggest that mitochondrial dysfunction post-TOCP intoxication leads to an elevated intracellular Ca2+ concentration, which plays a pivotal role in the initiation and development of OPIDN through inducing SARM1-mediated axonal degeneration and activating the necroptotic signaling pathway.


Assuntos
Cálcio , Galinhas , Mitocôndrias , Necroptose , Degeneração Walleriana , Animais , Necroptose/efeitos dos fármacos , Cálcio/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Degeneração Walleriana/induzido quimicamente , Degeneração Walleriana/patologia , Degeneração Walleriana/metabolismo , Feminino , Camundongos , Tritolil Fosfatos/toxicidade , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Medula Espinal/patologia , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/patologia , Síndromes Neurotóxicas/patologia , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/etiologia , Compostos Organofosforados/toxicidade , Compostos Organofosforados/farmacologia , Linhagem Celular Tumoral
14.
Environ Int ; 187: 108662, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38653130

RESUMO

BACKGROUND: Potential effect of greenspace exposure on human microbiota have been explored by a number of observational and interventional studies, but the results remained mixed. We comprehensively synthesized these studies by performing a systematic review following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. METHODS: Comprehensive literature searches in three international databases (PubMed, Embase, and Web of Science) and three Chinese databases (China National Knowledge Infrastructure, Wanfang, and China Biology Medicine disc) were conducted from inception to November 1, 2023. Observational and interventional studies that evaluated associations between greenspace exposure and human microbiota at different anatomical sites were included. Studies were assessed using the National Toxicology Program's office of Health Assessment and Translation risk of bias tool and certainty of evidence was assessed using the Grading of Recommendations, Assessment, Development and Evaluation framework. Two authors independently performed study selection, data extraction, and risk of bias assessment, and evidence grading. Study results were synthesized descriptively. RESULTS: Twenty studies, including 11 observational studies and 9 interventional studies, were finally included into the systematic review. The microbiota of the included studies was from gut (n = 13), skin (n = 10), oral cavity (n = 5), nasal cavity (n = 5) and eyes (n = 1). The majority of studies reported the associations of greenspace exposure with increased diversity (e.g., richness and Shannon index) and/or altered overall composition of human gut (n = 12) and skin microbiota (n = 8), with increases in the relative abundance of probiotics (e.g., Ruminococcaceae) and decreases in the relative abundance of pathogens (e.g., Streptococcus and Escherichia/Shigella). Due to limited number of studies, evidence concerning greenspace and oral, nasal, and ocular microbiota were still inconclusive. CONCLUSION: The current evidence suggests that greenspace exposure may diversify gut and skin microbiota and alter their composition to healthier profiles. These findings would be helpful in uncovering the potential mechanisms underlying greenspace and human health and in promoting a healthier profile of human microbiota.


Assuntos
Microbiota , Humanos , Exposição Ambiental
15.
BMC Pulm Med ; 24(1): 209, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38685004

RESUMO

BACKGROUND: The pathogenesis of adult non-cystic fibrosis (CF) bronchiectasis is complex, and the relevant molecular mechanism remains ambiguous. Versican (VCAN) is a key factor in inflammation through interactions with adhesion molecules. This study constructs a stable panoramic map of mRNA, reveals the possible pathogenesis of bronchiectasis, and provides new ideas and methods for bronchiectasis. METHODS: Peripheral blood and tissue gene expression data from patients with bronchiectasis and normal control were selected by bioinformatics analysis. The expression of VCAN in peripheral blood and bronchial tissues of bronchiectasis were obtained by transcriptome sequencing. The protein expression levels of VCAN in serums were verified by the enzyme-linked immunosorbent assay (ELISA). The mRNA expression levels of VCAN in co-culture of Pseudomonas aeruginosa and bronchial epithelial cells were verified by real-time quantitative polymerase chain reaction (RT-qPCR). In addition, the biological function of VCAN was detected by the transwell assay. RESULTS: The expression of VCAN was upregulated in the bronchiectasis group by sequencing analysis (P < 0.001). The expression of VCAN in the bronchial epithelial cell line BEAS-2B was increased in P. aeruginosa (P.a), which was co-cultured with BEAS-2B cells (P < 0.05). The concentration of VCAN protein in the serum of patients with bronchiectasis was higher than that in the normal control group (P < 0.05). Transwell experiments showed that exogenous VCAN protein induced the migration of neutrophils (P < 0.0001). CONCLUSIONS: Our findings indicate that VCAN may be involved in the development of bronchiectasis by increasing the migration of neutrophils and play an important role in bronchial pathogenesis.


Assuntos
Bronquiectasia , Versicanas , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Retrospectivos , Versicanas/genética , Versicanas/metabolismo , Adulto , Pseudomonas aeruginosa/genética , Células Epiteliais/metabolismo , Idoso , Regulação para Cima , Técnicas de Cocultura , Brônquios/patologia , Linhagem Celular , RNA Mensageiro/metabolismo , Estudos de Casos e Controles , Relevância Clínica
16.
Org Biomol Chem ; 22(13): 2566-2573, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38465392

RESUMO

N 6-Methyladenosine (6mA) is a well-known prokaryotic DNA modification that has been shown to play epigenetic roles in eukaryotic DNA. Accurate detection and quantification of 6mA are prerequisites for molecular understanding of the impact of 6mA modification on DNA. However, the existing methods have several problems, such as high false-positive rate, time-consuming and complex operating procedures. Chemical sensors for the selective detection of 6mA modification are rarely reported in the literature. Fluorinated phenylboronic acid combined with 19F NMR analysis is an effective method for determining DNA or RNA modification. In this study, we presented a simple and fast chemical method for labelling the 6th imino group of 6mA using a boric-acid-derived probe. Besides, the trifluoromethyl group of trifluoromethyl phenylboronic acid (2a) could detect 6mA modification through 19F NMR. Combined with this sensor system, 6mA modification could be detected well and quickly in 6 types of deoxynucleoside mixtures and DNA samples. Taken together, the method developed in the current study has potential for specific detection of 6mA in biological samples.


Assuntos
Adenosina/análogos & derivados , Ácidos Borônicos , DNA , DNA/química , Metilação de DNA , Espectroscopia de Ressonância Magnética
17.
Nat Metab ; 6(3): 578-597, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38409604

RESUMO

Emerging evidence suggests that modulation of gut microbiota by dietary fibre may offer solutions for metabolic disorders. In a randomized placebo-controlled crossover design trial (ChiCTR-TTRCC-13003333) in 37 participants with overweight or obesity, we test whether resistant starch (RS) as a dietary supplement influences obesity-related outcomes. Here, we show that RS supplementation for 8 weeks can help to achieve weight loss (mean -2.8 kg) and improve insulin resistance in individuals with excess body weight. The benefits of RS are associated with changes in gut microbiota composition. Supplementation with Bifidobacterium adolescentis, a species that is markedly associated with the alleviation of obesity in the study participants, protects male mice from diet-induced obesity. Mechanistically, the RS-induced changes in the gut microbiota alter the bile acid profile, reduce inflammation by restoring the intestinal barrier and inhibit lipid absorption. We demonstrate that RS can facilitate weight loss at least partially through B. adolescentis and that the gut microbiota is essential for the action of RS.


Assuntos
Microbioma Gastrointestinal , Animais , Humanos , Masculino , Camundongos , Obesidade/microbiologia , Sobrepeso , Amido Resistente , Aumento de Peso , Redução de Peso , Estudos Cross-Over
18.
Environ Res ; 249: 118314, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38331145

RESUMO

BACKGROUND: A growing number of studies have examined the relation between solid fuels use and cognitive function in the mid-elderly, but results are inconsistent. Therefore, a systematic review and meta-analysis was carried out to evaluate their relevance and the efficacy of switching to cleaner fuels or using ventilation. METHOD: We used PubMed, Web of Science, and Cochrane Library databases to identify 17 studies in which the primary outcome variable was cognitive function decline or cognitive disorders, and the exposure measure was solid fuels use. The final search date of August 31, 2023. The effect size of odds ratio (OR), regression coefficient (ß), and 95% confidence interval (CI) were pooled. Heterogeneity and the possibility of publication bias were assessed by using the Q-statistic and Begg's test, respectively. RESULT: Among the 17 included papers, the study participants were ≥45 years old. Eleven studies assessed the relationship between solid fuels use and cognitive function decline [number of studies (n) = 11, ß = -0.144; I2 = 97.7%]. Five studies assessed the relationship between solid fuels use and cognitive disorders (n = 5, OR = 1.229; I2 = 41.1%). Switching from using solid fuels to clean fuels could reduce the risk of cognitive function decline as compared to those who remained on using solid fuels (n = 2; ß = 0.710; I2 = 82.4%). Among participants using solid fuels, who cooked without on ventilated stoves were correlated with an enhanced risk of cognitive disorders as compared to participants who cooked with ventilated stoves (n = 2; OR = 1.358; I2 = 44.7%). CONCLUSION: Our meta-analysis showed a negative relationship between solid fuels use with cognitive function, and a positive relationship with cognitive disorders. Cleaner fuels, using ventilation, improved cookstoves can reduce the adverse health hazards of solid fuels use.


Assuntos
Poluição do Ar em Ambientes Fechados , Cognição , Ventilação , Humanos , Poluição do Ar em Ambientes Fechados/efeitos adversos , Culinária , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/epidemiologia
19.
Adv Sci (Weinh) ; 11(14): e2308663, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38311580

RESUMO

The incorporation of crown ether into metal-organic frameworks (MOFs) is garnered significant attention because these macrocyclic units can fine-tune the inherent properties of the frameworks. However, the synthesis of flexible crown ethers with precise structures as the fundamental building blocks of crystalline MOFs remains a challenging endeavor, with only a limited number of transition metal examples existing to date. Herein, 18-crown-6 and 24-crown-8 struts are successfully incorporated into the skeleton of zirconium-based MOFs to obtain two new and stable crown ether-based MOFs, denoted as ZJU-X100 and ZJU-X102. These newly developed MOFs displayed high porosity and remarkable stability when exposed to various solvents, boiling water, pH values, and even concentrated HCl conditions. Thanks to their highly ordered porous structure and high-density embedding of specific binding sites within tubular channels, these two MOFs exhibited extremely fast sorption kinetics and demonstrated outstanding performance in the uptake of strontium and cesium ions, respectively. Furthermore, the structures of Sr-adsorbed ZJU-X100 and Cs-adsorbed ZJU-X102 are solved and confirmed the precise location of Sr2+/Cs+ in the cavity of 18-crown-6/24-crown-8. This makes modular mosaic of different crown ethers into the skeleton of stable zirconium-based MOFs possible and promote such materials have broad applications in sorption, sensing, and catalysis.

20.
iScience ; 27(2): 108815, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38322991

RESUMO

Hypoxia-induced pulmonary hypertension (HPH) is a fatal cardiovascular disease characterized by an elevation in pulmonary artery pressure, resulting in right ventricular dysfunction and eventual heart failure. Exploring the pathogenesis of HPH is crucial, and small noncoding RNAs (sncRNAs) are gaining recognition as potential regulators of cellular responses to hypoxia. In this study, we conducted a comprehensive analysis of sncRNA profiles in eight tissues of male HPH rats using high-throughput sequencing. Our study unveiled several sncRNAs, with the brain, kidney, and spleen exhibiting the highest abundance of microRNA (miRNA), tRNA-derived small RNA (tDR), and small nucleolar RNA (snoRNA), respectively. Moreover, we identified numerous tissue-specific and hypoxia-responsive sncRNAs, particularly miRNAs and tDRs. Interestingly, we observed arm switching in miRNAs under hypoxic conditions and a significant increase in the abundance of 5' tRNA-halves among the total tDRs during hypoxia. Overall, our study provides a comprehensive characterization of the sncRNA profiles in HPH rats.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA