RESUMO
Asthma is a chronic inflammatory disorder of the lungs that results in airway inflammation and narrowing. BS012 is an herbal remedy containing Asarum sieboldii, Platycodon grandiflorum, and Cinnamomum cassia extracts. To elucidate the anti-asthma effect of BS012, this study analyzed the immune response, respiratory protection, and changes in metabolic mechanisms in an ovalbumin-induced allergic asthma mouse model. Female BALB/c mice were exposed to ovalbumin to induce allergic asthma. Bronchoalveolar lavage fluid and plasma were analyzed for interleukin and immunoglobulin E levels. Histological analyses of the lungs were performed to measure morphological changes. Apoptosis-related mediators were assayed by western blotting. Plasma and lung tissue metabolomic analyses were performed to investigate the metabolic changes. A T-helper-2-like differentiated cell model was used to identify the active components of BS012. BS012 treatment improved inflammatory cell infiltration, mucus production, and goblet cell hyperplasia in lung tissues. BS012 also significantly downregulated ovalbumin-specific immunoglobulin E in plasma and T-helper-2-specific cytokines, interleukin-4 and -5, in bronchoalveolar lavage fluid. The lungs of ovalbumin-inhaled mice exhibited nerve growth factor-mediated apoptotic protein expression, which was significantly attenuated by BS012 treatment. Ovalbumin-induced abnormalities in amino acid and lipid metabolism were improved by BS012 in correlation with its anti-inflammatory properties and normalization of energy metabolism. Additionally, the differentiated cell model revealed that N-isobutyl-dodecatetraenamide is an active component that contributes to the anti-allergic properties of BS012. The current findings demonstrate the anti-allergic and respiratory protective functions of BS012 against allergic asthma, which can be considered a therapeutic candidate.
RESUMO
Erastin, a ferroptosis-inducing system xc- inhibitor, faces clinical challenges due to suboptimal physicochemical and pharmacokinetic properties, as well as relatively low potency and off-target toxicity. Addressing these, we developed ECINs, a novel laser-responsive erastin-loaded nanomedicine utilizing indocyanine green (ICG)-grafted chondroitin sulfate A (CSA) derivatives. Our aim was to improve erastin's tumor targeting via CSA-CD44 interactions and enhance its antitumor efficacy through ICG's photothermal and photodynamic effects in the laser-on state while minimizing off-target effects in the laser-off state. ECINs, with their nanoscale size of 186.7 ± 1.1 nm and high erastin encapsulation efficiency of 93.0 ± 0.8%, showed excellent colloidal stability and sustained drug release up to 120 h. In vitro, ECINs demonstrated a mechanism of cancer cell inhibition via G1-phase cell cycle arrest, indicating a non-ferroptotic action. In vivo biodistribution studies in SK-HEP-1 xenograft mice revealed that ECINs significantly enhanced tumor distribution of erastin (1.9-fold greater than free erastin) while substantially reducing off-target accumulation in the lungs and spleen by 203-fold and 19.1-fold, respectively. Combined with laser irradiation, ECINs significantly decreased tumor size (2.6-fold, compared to free erastin; 2.4-fold, compared to ECINs without laser irradiation) with minimal systemic toxicity. This study highlights ECINs as a dual-modality approach for liver cancer treatment, demonstrating significant efficacy against tumors overexpressing CD44 and system xc-.
Assuntos
Sulfatos de Condroitina , Receptores de Hialuronatos , Verde de Indocianina , Neoplasias Hepáticas , Camundongos Nus , Animais , Sulfatos de Condroitina/química , Sulfatos de Condroitina/administração & dosagem , Sulfatos de Condroitina/farmacocinética , Humanos , Receptores de Hialuronatos/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/terapia , Linhagem Celular Tumoral , Verde de Indocianina/administração & dosagem , Verde de Indocianina/farmacocinética , Distribuição Tecidual , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Lasers , Nanomedicina/métodos , Camundongos Endogâmicos BALB C , Camundongos , Liberação Controlada de Fármacos , Nanopartículas/química , Nanopartículas/administração & dosagem , FemininoRESUMO
Hepatic stellate cells (HSCs) play a role in hepatic fibrosis and sphingosine kinase (SphK) is involved in biological processes. As studies on the regulatory mechanisms and functions of SphK in HSCs during liver fibrosis are currently limited, this study aimed to elucidate the regulatory mechanism and connected pathways of SphK upon HSC activation. The expression of SphK1 was higher in HSCs than in hepatocytes, and upregulated in activated primary HSCs. SphK1 was also increased in liver homogenates of carbon tetrachloride-treated or bile duct ligated mice and in transforming growth factor-ß (TGF-ß)-treated LX-2 cells. TGF-ß-mediated SphK1 induction was due to Smad3 signaling in LX-2 cells. SphK1 modulation altered the expression of liver fibrogenesis-related genes. This SphK1-mediated profibrogenic effect was dependent on SphK1/sphingosine-1-phosphate/sphingosine-1-phosphate receptor signaling through ERK. Epigallocatechin gallate blocked TGF-ß-induced SphK1 expression and hepatic fibrogenesis by attenuating Smad and MAPK activation. SphK1 induced by TGF-ß facilitates HSC activation and liver fibrogenesis, which is reversed by epigallocatechin gallate. Accordingly, SphK1 and related signal transduction may be utilized to treat liver fibrosis.
Assuntos
Células Estreladas do Fígado , Cirrose Hepática , Fosfotransferases (Aceptor do Grupo Álcool) , Animais , Humanos , Masculino , Camundongos , Linhagem Celular , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Camundongos Endogâmicos C57BL , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fator de Crescimento Transformador beta/metabolismoRESUMO
Chronic hypertension leads to injury and fibrosis in major organs. Fibroblast activation protein (FAP) is one of key molecules in tissue fibrosis, and 68Ga-labeled FAP inhibitor-46 (FAPI46) PET is a recently developed method for evaluating FAP. The aim of this study was to evaluate FAP expression and fibrosis in a hypertension model and to test the feasibility of 68Ga-FAPI46 PET in hypertension. Methods: Hypertension was induced in mice by angiotensin II infusion for 4 wk. 68Ga-FAPI46 biodistribution studies and PET scanning were conducted at 1, 2, and 4 wk after hypertension modeling, and uptake in the major organs was measured. The FAP expression and fibrosis formation of the heart and kidney tissues were analyzed and compared with 68Ga-FAPI46 uptake. Subgroups of the hypertension model underwent angiotensin receptor blocker administration and high-dose FAPI46 blocking, for comparison. As a preliminary human study, 68Ga-FAPI46 PET images of lung cancer patients were analyzed and compared between hypertension and control groups. Results: Uptake of 68Ga-FAPI46 in the heart and kidneys was significantly higher in the hypertension group than in the sham group as early as week 1 and decreased after week 2. The uptake was specifically blocked in the high-dose blocking study. Immunohistochemistry also revealed FAP expression in both heart and kidney tissues. However, overt fibrosis was observed in the heart, whereas it was absent from the kidneys. The angiotensin receptor blocker-treated group showed lower uptake in the heart and kidneys than did the hypertension group. In the pilot human study, renal uptake of 68Ga-FAPI46 significantly differed between the hypertension and control groups. Conclusion: In hypertension, FAP expression is increased in the heart and kidneys from the early phases and decreases over time. FAP expression appears to represent fibrosis activity preceding or underlying fibrotic tissue formation. 68Ga-FAPI46 PET has potential as an effective imaging method for evaluating FAP expression in progressive fibrosis by hypertension.
Assuntos
Endopeptidases , Fibrose , Hipertensão , Proteínas de Membrana , Tomografia por Emissão de Pósitrons , Serina Endopeptidases , Animais , Camundongos , Hipertensão/metabolismo , Hipertensão/diagnóstico por imagem , Hipertensão/complicações , Humanos , Masculino , Endopeptidases/metabolismo , Serina Endopeptidases/metabolismo , Proteínas de Membrana/metabolismo , Distribuição Tecidual , Gelatinases/metabolismo , Feminino , Radioisótopos de Gálio , Rim/diagnóstico por imagem , Rim/metabolismo , Camundongos Endogâmicos C57BL , QuinolinasRESUMO
BACKGROUND/AIMS: Blocking the complement system is a promising strategy to impede the progression of metabolic dysfunction-associated steatotic liver disease (MASLD). However, the interplay between complement and MASLD remains to be elucidated. This comprehensive approach aimed to investigate the potential association between complement dysregulation and the histological severity of MASLD. METHODS: Liver biopsy specimens were procured from a cohort comprising 106 Korean individuals, which included 31 controls, 17 with isolated steatosis, and 58 with metabolic dysfunction-associated steatohepatitis (MASH). Utilizing the Infinium Methylation EPIC array, thorough analysis of methylation alterations in 61 complement genes was conducted. The expression and methylation of nine complement genes in a murine MASH model were examined using quantitative RT-PCR and pyrosequencing. RESULTS: Methylome and transcriptome analyses of liver biopsies revealed significant (P<0.05) hypermethylation and downregulation of C1R, C1S, C3, C6, C4BPA, and SERPING1, as well as hypomethylation (P<0.0005) and upregulation (P<0.05) of C5AR1, C7, and CD59, in association with the histological severity of MASLD. Furthermore, DNA methylation and the relative expression of nine complement genes in a MASH diet mouse model aligned with human data. CONCLUSION: Our research provides compelling evidence that epigenetic alterations in complement genes correlate with MASLD severity, offering valuable insights into the mechanisms driving MASLD progression, and suggests that inhibiting the function of certain complement proteins may be a promising strategy for managing MASLD.
Assuntos
Proteínas do Sistema Complemento , Metilação de DNA , Epigênese Genética , Fígado Gorduroso , Animais , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Proteínas do Sistema Complemento/metabolismo , Proteínas do Sistema Complemento/genética , Feminino , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Adulto , Fígado/metabolismo , Fígado/patologia , Modelos Animais de Doenças , Epigenoma , Camundongos Endogâmicos C57BLRESUMO
BACKGROUND: Deformable registration is required to generate a time-integrated activity (TIA) map which is essential for voxel-based dosimetry. The conventional iterative registration algorithm using anatomical images (e.g., computed tomography (CT)) could result in registration errors in functional images (e.g., single photon emission computed tomography (SPECT) or positron emission tomography (PET)). Various deep learning-based registration tools have been proposed, but studies specifically focused on the registration of serial hybrid images were not found. PURPOSE: In this study, we introduce CoRX-NET, a novel unsupervised deep learning network designed for deformable registration of hybrid medical images. The CoRX-NET structure is based on the Swin-transformer (ST), allowing for the representation of complex spatial connections in images. Its self-attention mechanism aids in the effective exchange and integration of information across diverse image regions. To augment the amalgamation of SPECT and CT features, cross-stitch layers have been integrated into the network. METHODS: Two different 177 Lu DOTATATE SPECT/CT datasets were acquired at different medical centers. 22 sets from Seoul National University and 14 sets from Sunway Medical Centre are used for training/internal validation and external validation respectively. The CoRX-NET architecture builds upon the ST, enabling the modeling of intricate spatial relationships within images. To further enhance the fusion of SPECT and CT features, cross-stitch layers have been incorporated within the network. The network takes a pair of SPECT/CT images (e.g., fixed and moving images) and generates a deformed SPECT/CT image. The performance of the network was compared with Elastix and TransMorph using L1 loss and structural similarity index measure (SSIM) of CT, SSIM of normalized SPECT, and local normalized cross correlation (LNCC) of SPECT as metrics. The voxel-wise root mean square errors (RMSE) of TIA were compared among the different methods. RESULTS: The ablation study revealed that cross-stitch layers improved SPECT/CT registration performance. The cross-stitch layers notably enhance SSIM (internal validation: 0.9614 vs. 0.9653, external validation: 0.9159 vs. 0.9189) and LNCC of normalized SPECT images (internal validation: 0.7512 vs. 0.7670, external validation: 0.8027 vs. 0.8027). CoRX-NET with the cross-stitch layer achieved superior performance metrics compared to Elastix and TransMorph, except for CT SSIM in the external dataset. When qualitatively analyzed for both internal and external validation cases, CoRX-NET consistently demonstrated superior SPECT registration results. In addition, CoRX-NET accomplished SPECT/CT image registration in less than 6 s, whereas Elastix required approximately 50 s using the same PC's CPU. When employing CoRX-NET, it was observed that the voxel-wise RMSE values for TIA were approximately 27% lower for the kidney and 33% lower for the tumor, compared to when Elastix was used. CONCLUSION: This study represents a major advancement in achieving precise SPECT/CT registration using an unsupervised deep learning network. It outperforms conventional methods like Elastix and TransMorph, reducing uncertainties in TIA maps for more accurate dose assessments.
Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador , Radiometria , Processamento de Imagem Assistida por Computador/métodos , Humanos , Radiometria/métodos , Aprendizado de Máquina não Supervisionado , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único/métodosRESUMO
AIMS: While significant upregulation of GRP78 has been documented in lung cancer patients, its association with resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) remains underexamined. Our study aimed to elucidate the functional importance of GRP78 in acquired resistance to EGFR-TKIs in non-small cell lung cancer (NSCLC) and to evaluate its potential as a therapeutic target. MAIN METHODS: Immunoblot analysis or flow cytometry was employed to assess several markers for endoplasmic reticulum (ER) stress and apoptosis. Ru(II) complex I and HA15, two known GRP78 inhibitors, were used to evaluate the functional role of GRP78. A Xenograft assay was performed to evaluate the in vivo anti-cancer effects of the GRP78 inhibitors. KEY FINDINGS: We validated a significant increase in GRP78 protein levels in HCC827-GR, H1993-GR, and H1993-ER cells. The EGFR-TKI-resistant cells overexpressing GRP78 exhibited significantly higher cell proliferation rates than did their parental counterparts. Notably, GRP78 inhibition resulted in a more profound anti-proliferative and apoptotic response via heightened ER stress and subsequent reactive oxygen species (ROS) production in EGFR-TKI-resistant cell lines compared with their parental cells. In xenograft models implanted with HCC827-GR, both Ru(II) complex I and HA15 significantly suppressed tumor growth and reduced tumor weight. Additionally, we confirmed that GRP78 plays a critical role in the proliferation of H1975, an EGFR-TKI-resistant T790M-mutant cell line, relative to other NSCLC cell lines. SIGNIFICANCE: Our findings strongly support targeting of GRP78 as a promising therapeutic strategy for NSCLC patients with acquired resistance to EGFR-TKIs.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Resistencia a Medicamentos Antineoplásicos , Chaperona BiP do Retículo Endoplasmático , Receptores ErbB , Proteínas de Choque Térmico , Neoplasias Pulmonares , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Feminino , Humanos , Camundongos , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Proteínas de Choque Térmico/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Espécies Reativas de Oxigênio/metabolismo , /farmacologiaRESUMO
Mitochondria are essential organelles in cellular energy metabolism and other cellular functions. Mitochondrial dysfunction is closely linked to cellular damage and can potentially contribute to the aging process. The purpose of this study was to investigate the subcellular structure of mitochondria and their activities in various cellular environments using super-resolution stimulated emission depletion (STED) nanoscopy. We examined the morphological dispersion of mitochondria below the diffraction limit in sub-cultured human primary skin fibroblasts and mouse skin tissues. Confocal microscopy provides only the overall morphology of the mitochondrial membrane and an indiscerptible location of nucleoids within the diffraction limit. Conversely, super-resolution STED nanoscopy allowed us to resolve the nanoscale distribution of translocase clusters on the mitochondrial outer membrane and accurately quantify the number of nucleoids per cell in each sample. Comparable results were obtained by analyzing the translocase distribution in the mouse tissues. Furthermore, we precisely and quantitatively analyzed biomolecular distribution in nucleoids, such as the mitochondrial transcription factor A (TFAM), using STED nanoscopy. Our findings highlight the efficacy of super-resolution fluorescence imaging in quantifying aging-related changes on the mitochondrial sub-structure in cells and tissues.
Assuntos
Mitocôndrias , Raios Ultravioleta , Humanos , Animais , Camundongos , Microscopia de Fluorescência/métodos , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Células HeLaRESUMO
BACKGROUND: Breast cancer, the most prevalent cancer in women worldwide, faces treatment challenges due to drug resistance, posing a serious threat to patient survival. The present study aimed to identify the key molecules that drive drug resistance and aggressiveness in breast cancer cells and validate them as therapeutic targets. METHODS: Transcriptome microarray and analysis using PANTHER pathway and StemChecker were performed to identify the most significantly expressed genes in tamoxifen-resistant and adriamycin-resistant MCF-7 breast cancer cells. Clinical relevance of the key genes was determined using Kaplan-Meier survival analyses on The Cancer Genome Atlas dataset of breast cancer patients. Gene overexpression/knockdown, spheroid formation, flow cytometric analysis, chromatin immunoprecipitation, immunocytochemistry, wound healing/transwell migration assays, and cancer stem cell transcription factor activation profiling array were used to elucidate the regulatory mechanism of integrin α11 expression. Tumour-bearing xenograft models were used to demonstrate integrin α11 is a potential therapeutic target. RESULTS: Integrin α11 was consistently upregulated in drug-resistant breast cancer cells, and its silencing inhibited cancer stem cells (CSCs) and epithelial-mesenchymal transition (EMT) while restoring sensitivity to anticancer drugs. HIF1α, GLI-1, and EZH2 contributed the most to the regulation of integrin α11 and EZH2 expression, with EZH2 being more necessary for EZH2 autoinduction than HIF1α and GLI-1. Additionally, unlike HIF1α or EZH2, GLI-1 was the sole transcription factor activated by integrin-linked focal adhesion kinase, indicating GLI-1 as a key driver of the EZH2-integrin α11 axis operating for cancer stem cell survival and EMT. Kaplan-Meier survival analysis using The Cancer Genome Atlas (TCGA) dataset also revealed both EZH2 and integrin α11 could be strong prognostic factors of relapse-free and overall survival in breast cancer patients. However, the superior efficacy of integrin α11 siRNA therapy over EZH2 siRNA treatment was demonstrated by enhanced inhibition of tumour growth and prolonged survival in murine models bearing tumours. CONCLUSION: Our findings elucidate that integrin α11 is upregulated by EZH2, forming a positive feedback circuit involving FAK-GLI-1 and contributing to drug resistance, cancer stem cell survival and EMT. Taken together, the results suggest integrin α11 as a promising prognostic marker and a powerful therapeutic target for drug-resistant breast cancer.
Assuntos
Neoplasias da Mama , Resistencia a Medicamentos Antineoplásicos , Proteína Potenciadora do Homólogo 2 de Zeste , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Células-Tronco Neoplásicas , RNA Interferente Pequeno , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/mortalidade , Neoplasias da Mama/terapia , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Animais , Camundongos , Transição Epitelial-Mesenquimal/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , RNA Interferente Pequeno/genética , Linhagem Celular Tumoral , Progressão da Doença , Células MCF-7 , Proliferação de Células , Perfilação da Expressão GênicaRESUMO
Solid pseudopapillary tumor (SPT) of the pancreas is a neoplasm with low malignant potential. It is often challenging to diagnose SPT due to its nonspecific clinical and radiological features, and [18F]FDOPA is effective in diagnosing SPT, particularly in differentiating SPT from benign conditions such as splenosis. A 55-year-old woman underwent distal pancreatectomy and splenectomy for histologically confirmed SPT. She was also initially diagnosed with splenosis. During follow-up, sizes of multiple nodular lesions were increased, raising the possibility of peritoneal seeding of SPT. For diagnosis, a spleen scan and SPECT/CT were performed using 99mTc-labeled damaged red blood cells, which showed no uptake in the peritoneal nodules. Subsequent [18F]FDOPA PET/CT revealed [18F]FDOPA-avidity of the nodules. The patient underwent tumor resection surgery, and the nodules were pathologically confirmed as SPT.
RESUMO
Lung cancer represents a significant global health concern and stands as the leading cause of cancer-related mortality worldwide. The identification of specific genomic alterations such as EGFR and KRAS in lung cancer has paved the way for the development of targeted therapies. While targeted therapies for lung cancer exhibiting EGFR, MET and ALK mutations have been well-established, the options for RET mutations remain limited. Importantly, RET mutations have been found to be mutually exclusive from other genomic mutations and to be related with high incidences of brain metastasis. Given these facts, it is imperative to explore the development of RET-targeting therapies and to elucidate the mechanisms underlying metastasis in RET-expressing lung cancer cells. In this study, we investigated PLM-101, a novel dual-target inhibitor of RET/YES1, which exhibits notable anti-cancer activities against CCDC6-RET-positive cancer cells and anti-metastatic effects against YES1-positive cancer cells. Our findings shed light on the significance of the YES1-Cortactin-actin remodeling pathway in the metastasis of lung cancer cells, establishing YES1 as a promising target for suppression of metastasis. This paper unveils a novel inhibitor that effectively targets both RET and YES1, thereby demonstrating its potential to impede the growth and metastasis of RET rearrangement lung cancer.
Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patologia , Inibidores de Proteínas Quinases/uso terapêutico , Mutação , Receptores ErbB/metabolismo , Proteínas Proto-Oncogênicas c-ret/genética , Proteínas Proto-Oncogênicas c-yesRESUMO
Fibrotic diseases are characterized by the abnormal accumulation of collagen in the extracellular matrix, leading to the functional impairment of various organs. In the skin, excessive collagen deposition manifests as hypertrophic scars and keloids, placing a substantial burden on patients and the healthcare system worldwide. HSP47 is essential for proper collagen assembly and contributes to fibrosis. However, identifying clinically applicable HSP47 inhibitors has been a major pharmaceutical challenge. In this study, we identified benzbromarone (BBR) as an HSP47 inhibitor for hypertrophic scarring treatment. BBR inhibited collagen production and secretion in fibroblasts from patients with keloid by binding to HSP47 and inhibiting the interaction between HSP47 and collagen. Interestingly, BBR not only inhibits HSP47 but also acts as a molecular glue degrader that promotes its proteasome-dependent degradation. Through these molecular mechanisms, BBR effectively reduced hypertrophic scarring in mini pigs and rats with burns and/or excisional skin damage. Thus, these findings suggest that BBR can be used to clinically treat hypertrophic scars and, more generally, fibrotic diseases.
Assuntos
Cicatriz Hipertrófica , Queloide , Humanos , Animais , Ratos , Suínos , Cicatriz Hipertrófica/patologia , Benzobromarona/metabolismo , Benzobromarona/farmacologia , Proteínas de Choque Térmico HSP47/metabolismo , Porco Miniatura/metabolismo , Queloide/patologia , Colágeno/metabolismo , Fibrose , Fibroblastos/metabolismoRESUMO
PURPOSE: Presynaptic dopaminergic positron emission tomography (PET) imaging serves as an essential tool in diagnosing and differentiating patients with suspected parkinsonism, including idiopathic Parkinson's disease (PD) and other neurodegenerative and non-neurodegenerative diseases. The PET tracers most commonly used at the present time mainly target dopamine transporters (DAT), aromatic amino acid decarboxylase (AADC), and vesicular monoamine type 2 (VMAT2). However, established standards for the imaging procedure and interpretation of presynaptic dopaminergic PET imaging are still lacking. The goal of this international consensus is to help nuclear medicine practitioners procedurally perform presynaptic dopaminergic PET imaging. METHOD: A multidisciplinary task group formed by experts from various countries discussed and approved the consensus for presynaptic dopaminergic PET imaging in parkinsonism, focusing on standardized recommendations, procedures, interpretation, and reporting. CONCLUSION: This international consensus and practice guideline will help to promote the standardized use of presynaptic dopaminergic PET imaging in parkinsonism. It will become an international standard for this purpose in clinical practice.
Assuntos
Doença de Parkinson , Transtornos Parkinsonianos , Humanos , Dopamina/metabolismo , Consenso , Transtornos Parkinsonianos/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Doença de Parkinson/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismoRESUMO
Although tamoxifen (TAM) is widely used in patients with estrogen receptor-positive breast cancer, the development of tamoxifen resistance is common. The previous finding suggests that the development of tamoxifen resistance is driven by epiregulin or hypoxia-inducible factor-1α-dependent glycolysis activation. Nonetheless, the mechanisms responsible for cancer cell survival and growth in a lactic acid-rich environment remain elusive. We found that the growth and survival of tamoxifen-resistant MCF-7 cells (TAMR-MCF-7) depend on glycolysis rather than oxidative phosphorylation. The levels of the glycolytic enzymes were higher in TAMR-MCF-7 cells than in parental MCF-7 cells, whereas the mitochondrial number and complex I level were decreased. Importantly, TAMR-MCF-7 cells were more resistant to low glucose and high lactate growth conditions. Isotope tracing analysis using 13C-lactate confirmed that lactate conversion to pyruvate was enhanced in TAMR-MCF-7 cells. We identified monocarboxylate transporter1 (MCT1) and lactate dehydrogenase B (LDHB) as important mediators of lactate influx and its conversion to pyruvate, respectively. Consistently, AR-C155858 (MCT1 inhibitor) inhibited the proliferation, migration, spheroid formation, and in vivo tumor growth of TAMR-MCF-7 cells. Our findings suggest that TAMR-MCF-7 cells depend on glycolysis and glutaminolysis for energy and support that targeting MCT1- and LDHB-dependent lactate recycling may be a promising strategy to treat patients with TAM-resistant breast cancer.
Assuntos
Neoplasias da Mama , Tamoxifeno , Feminino , Humanos , Antineoplásicos Hormonais/farmacologia , Antineoplásicos Hormonais/uso terapêutico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Lactatos/uso terapêutico , Células MCF-7 , Piruvatos/uso terapêutico , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêuticoRESUMO
Recent studies on osteosarcoma regimens have mainly focused on modifying the combination of antineoplastic agents rather than enhancing the therapeutic efficacy of each component. Here, an albumin nanocluster (NC)-assisted methotrexate (MTX), doxorubicin (DOX), and cisplatin (MAP) regimen with improved antitumor efficacy is presented. Human serum albumin (HSA) is decorated with thiamine pyrophosphate (TPP) to increase the affinity to the bone tumor microenvironment (TME). MTX or DOX (hydrophobic MAP components) is adsorbed to HSA-TPP via hydrophobic interactions. MTX- or DOX-adsorbed HSA-TPP NCs exhibit 20.8- and 1.64-fold higher binding affinity to hydroxyapatite, respectively, than corresponding HSA NCs, suggesting improved targeting ability to the bone TME via TPP decoration. A modified MAP regimen consisting of MTX- or DOX-adsorbed HSA-TPP NCs and free cisplatin displays a higher synergistic anticancer effect in HOS/MNNG human osteosarcoma cells than conventional MAP. TPP-decorated NCs show 1.53-fold higher tumor accumulation than unmodified NCs in an orthotopic osteosarcoma mouse model, indicating increased bone tumor distribution. As a result, the modified regimen more significantly suppresses tumor growth in vivo than solution-based conventional MAP, suggesting that HSA-TPP NC-assisted MAP may be a promising strategy for osteosarcoma treatment.
RESUMO
The FMS-like tyrosine kinase 3 (FLT3) gene encodes a class III receptor tyrosine kinase that is expressed in hematopoietic stem cells. The mutations of FLT3 gene found in 30% of acute myeloid leukemia (AML), leads to an abnormal constitutive activation of FLT3 kinase of the receptor and results in immature myeloblast cell proliferation. Although small molecule drugs targeting the FLT3 kinase have been approved, new FLT3 inhibitors are needed owing to the side effects and drug resistances arising from kinase domain mutations, such as D835Y and F691L. In this study, we have developed benzimidazole-indazole based novel inhibitors targeting mutant FLT3 kinases through the optimization of diverse chemical moieties substituted around the core skeleton. The most optimized compound 22f exhibited potent inhibitory activities against FLT3 and FLT3/D835Y, with IC50 values of 0.941 and 0.199 nM, respectively. Furthermore, 22f exhibited strong antiproliferative activity against an AML cell line, MV4-11 cells with a GI50 of 0.26 nM. More importantly, 22f showed single-digit nanomolar GI50 values in the mutant FLT kinase expressed Ba/F3 cell lines including FLT-D835Y (GI50 = 0.29 nM) and FLT3-F691L (GI50 = 2.87 nM). Molecular docking studies indicated that the compound exhibits a well-fitted binding mode as a type 1 inhibitor in the homology model of active conformation of FLT3 kinase.
Assuntos
Leucemia Mieloide Aguda , Tirosina Quinase 3 Semelhante a fms , Humanos , Tirosina Quinase 3 Semelhante a fms/genética , Indazóis/farmacologia , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Mutação , Leucemia Mieloide Aguda/metabolismo , Inibidores de Proteínas Quinases/químicaRESUMO
The benefits of biomedical research involving humans are well recognised, along with the need for conformity to international standards of science and ethics. When human research involves radiation imaging procedures or radiotherapy, an extra level of expert review should be provided from the point of view of radiological protection. The relevant publication of the International Commission for Radiological Protection (ICRP) is now three decades old and is currently undergoing an update. This paper aims to provoke discussions on how the risks of radiation dose and the benefits of research should be assessed, using a case study of diagnostic radiology involving volunteers for whom there is no direct benefit. Further, the paper provides the current understanding of key concepts being considered for review and revision-such as the dose constraint and the novel research methods on the horizon, including radiation biology and epidemiology. The analysis revisits the perspectives described in the ICRP Publication 62, and considers the recent progress in both radiological protection ethics and medical research ethics.
Assuntos
Proteção Radiológica , Radiologia , Humanos , Proteção Radiológica/métodos , Ética em Pesquisa , Agências InternacionaisRESUMO
Histone acetylation involves the transfer of two-carbon units to the nucleus that are embedded in low-concentration metabolites. We found that lactate, a high-concentration metabolic byproduct, can be a major carbon source for histone acetylation through oxidation-dependent metabolism. Both in cells and in purified nuclei, 13C3-lactate carbons are incorporated into histone H4 (maximum incorporation: ~60%). In the purified nucleus, this process depends on nucleus-localized lactate dehydrogenase (LDHA), knockout (KO) of which abrogates incorporation. Heterologous expression of nucleus-localized LDHA reverses the KO effect. Lactate itself increases histone acetylation, whereas inhibition of LDHA reduces acetylation. In vitro and in vivo settings exhibit different lactate incorporation patterns, suggesting an influence on the microenvironment. Higher nuclear LDHA localization is observed in pancreatic cancer than in normal tissues, showing disease relevance. Overall, lactate and nuclear LDHA can be major structural and regulatory players in the metabolism-epigenetics axis controlled by the cell's own status or the environmental status.
Assuntos
Histonas , Ácido Láctico , Histonas/metabolismo , Ácido Láctico/metabolismo , Acetilação , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Epigênese GenéticaRESUMO
Purpose: Deep learning (DL) has been widely used in various medical imaging analyses. Because of the difficulty in processing volume data, it is difficult to train a DL model as an end-to-end approach using PET volume as an input for various purposes including diagnostic classification. We suggest an approach employing two maximum intensity projection (MIP) images generated by whole-body FDG PET volume to employ pre-trained models based on 2-D images. Methods: As a retrospective, proof-of-concept study, 562 [18F]FDG PET/CT images and clinicopathological factors of lung cancer patients were collected. MIP images of anterior and lateral views were used as inputs, and image features were extracted by a pre-trained convolutional neural network (CNN) model, ResNet-50. The relationship between the images was depicted on a parametric 2-D axes map using t-distributed stochastic neighborhood embedding (t-SNE), with clinicopathological factors. Results: A DL-based feature map extracted by two MIP images was embedded by t-SNE. According to the visualization of the t-SNE map, PET images were clustered by clinicopathological features. The representative difference between the clusters of PET patterns according to the posture of a patient was visually identified. This map showed a pattern of clustering according to various clinicopathological factors including sex as well as tumor staging. Conclusion: A 2-D image-based pre-trained model could extract image patterns of whole-body FDG PET volume by using anterior and lateral views of MIP images bypassing the direct use of 3-D PET volume that requires large datasets and resources. We suggest that this approach could be implemented as a backbone model for various applications for whole-body PET image analyses.
RESUMO
Alzheimer's disease (AD) is the main cause of dementia, with its diagnosis and management remaining challenging. Amyloid positron emission tomography (PET) has become increasingly important in medical practice for patients with AD. To integrate and update previous guidelines in the field, a task group of experts of several disciplines from multiple countries was assembled, and they revised and approved the content related to the application of amyloid PET in the medical settings of cognitively impaired individuals, focusing on clinical scenarios, patient preparation, administered activities, as well as image acquisition, processing, interpretation and reporting. In addition, expert opinions, practices, and protocols of prominent research institutions performing research on amyloid PET of dementia are integrated. With the increasing availability of amyloid PET imaging, a complete and standard pipeline for the entire examination process is essential for clinical practice. This international consensus and practice guideline will help to promote proper clinical use of amyloid PET imaging in patients with AD.