Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 3619, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37385983

RESUMO

Laser-induced ultrafast demagnetization is an important phenomenon that probes arguably the ultimate limits of the angular momentum dynamics in solid. Unfortunately, many aspects of the dynamics remain unclear except that the demagnetization transfers the angular momentum eventually to the lattice. In particular, the role and origin of electron-carried spin currents in the demagnetization process are debated. Here we experimentally probe the spin current in the opposite phenomenon, i.e., laser-induced ultrafast magnetization of FeRh, where the laser pump pulse initiates the angular momentum build-up rather than its dissipation. Using the time-resolved magneto-optical Kerr effect, we directly measure the ultrafast-magnetization-driven spin current in a FeRh/Cu heterostructure. A strong correlation between the spin current and the magnetization dynamics of FeRh is found even though the spin filter effect is negligible in this opposite process. This result implies that the angular momentum build-up is achieved by an angular momentum transfer from the electron bath (supplier) to the magnon bath (receiver) and followed by the spatial transport of angular momentum (spin current) and dissipation of angular momentum to the phonon bath (spin relaxation).


Assuntos
Elétrons , Fônons , Frequência Cardíaca , Movimento (Física)
2.
Materials (Basel) ; 14(11)2021 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-34071011

RESUMO

The electron-phonon coupling (g) parameter plays a critical role in the ultrafast transport of heat, charge, and spin in metallic materials. However, the exact determination of the g parameter is challenging because of the complicated process during the non-equilibrium state. In this study, we investigate the g parameters of ferromagnetic 3d transition metal (FM) layers, Fe and Co, using time-domain thermoreflectance. We measure a transient increase in temperature of Au in an FM/Au bilayer; the Au layer efficiently detects the strong heat flow during the non-equilibrium between electrons and phonons in FM. The g parameter of the FM is determined by analyzing the temperature dynamics using thermal circuit modeling. The determined g values are 8.8-9.4 × 1017 W m-3 K-1 for Fe and 9.6-12.2 × 1017 W m-3 K-1 for Co. Our results demonstrate that all 3d transition FMs have a similar g value, in the order of 1018 W m-3 K-1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA