Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2403238, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38950170

RESUMO

Athletes are at high risk of dehydration, fatigue, and cardiac disorders due to extreme performance in often harsh environments. Despite advancements in sports training protocols, there is an urgent need for a non-invasive system capable of comprehensive health monitoring. Although a few existing wearables measure athlete's performance, they are limited by a single function, rigidity, bulkiness, and required straps and adhesives. Here, an all-in-one, multi-sensor integrated wearable system utilizing a set of nanomembrane soft sensors and electronics, enabling wireless, real-time, continuous monitoring of saliva osmolality, skin temperature, and heart functions is introduced. This system, using a soft patch and a sensor-integrated mouthguard, provides comprehensive monitoring of an athlete's hydration and physiological stress levels. A validation study in detecting real-time physiological levels shows the device's performance in capturing moments (400-500 s) of synchronized acute elevation in dehydration (350%) and physiological strain (175%) during field training sessions. Demonstration with a few human subjects highlights the system's capability to detect early signs of health abnormality, thus improving the healthcare of sports athletes.

2.
ACS Nano ; 17(17): 17372-17382, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37624768

RESUMO

Organic solid electrolytes compatible with all-solid-state Li metal batteries (LMBs) are essential to ensuring battery safety, high energy density, and long-term cycling performance. However, it remains a challenge to develop an approach to provide organic solid electrolytes with capabilities for the facile dissociation of strong Li-ion pairs and fast transport of ionic components. Herein, a diethylene glycol-modified pyridinium covalent organic framework (DEG-PMCOF) with a well-defined periodic structure is prepared as a multicomponent solid electrolyte with a cationic moiety of high polarity, an additional flexible ion-transporter, and an ordered ionic channel for all-solid-state LMBs. The DEG-containing pyridinium groups of DEG-PMCOF allow a lower dissociation energy of Li salts and a smaller energy barrier of Li-ion transport, leading to high ion conductivity (1.71 × 10-4 S cm-1) and a large Li-ion transfer number (0.61) at room temperature in the solid electrolyte. The DEG-PMCOF solid electrolyte exhibits a wide electrochemical stability window and effectively suppresses the formation of Li dendrites and dead Li in all-solid-state LMBs. Molecular dynamics and density functional theory simulations provide insights into the mechanisms for the enhanced Li-ion transport driven by the integrated diffusion process based on hopping motion, vehicle motion, and free diffusion of DEG-PMCOF. The all-solid-state LMB assembled with a DEG-PMCOF solid electrolyte displays a high specific capacity with a retention of 99% and an outstanding Coulombic efficiency of 99% at various C-rates during long-term cycling. This DEG-PMCOF approach can offer an effective route to design various solid-state Li batteries.

3.
Adv Mater ; 35(30): e2301308, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37068790

RESUMO

Organic solid electrolytes offer an effective route for safe and high-energy-density all-solid-state Li metal batteries. However, it remains a challenge to devise a new strategy to promote the dissociation of strong ion pairs and the transport of ionic components in organic solid electrolytes. Herein, a zwitterionic covalent organic framework (Zwitt-COF) with well-defined chemical and pore structures is prepared as a solid electrolyte capable of accelerating the dissociation and transport of Li ions. The Zwitt-COF solid electrolyte exhibits a high room-temperature ionic conductivity of 1.65 × 10-4  S cm-1 with a wide electrochemical stability window. Besides, the Zwitt-COF solid electrolyte displays stable Li plating/stripping behavior via effective inhibition of the formation of Li dendrites and dead Li, leading to superior long-term cycle performance with retention of 99% discharge capacity and 98% Coulombic efficiency in an all-solid-state Li-metal battery. Theoretical simulations reveal that the incorporation of zwitterionic groups into COF can facilitate the dissociation of strong ion pairs and reconstruct the AA-stacking configuration by dissociative adsorption of Li+ ions on Zwitt-COF producing linear hexagonal ion channels in the Zwitt-COF solid electrolyte. This strategy based on Zwitt-COF can provide an alternative way to construct various solid-state Li batteries.

4.
J Am Chem Soc ; 143(36): 14635-14645, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34410692

RESUMO

Antibodies are recognition molecules that can bind to diverse targets ranging from pathogens to small analytes with high binding affinity and specificity, making them widely employed for sensing and therapy. However, antibodies have limitations of low stability, long production time, short shelf life, and high cost. Here, we report a facile approach for the design of luminescent artificial antibodies with nonbiological polymeric recognition phases for the sensitive detection, rapid identification, and effective inactivation of pathogenic bacteria. Transition-metal dichalcogenide (TMD) nanosheets with a neutral dextran phase at the interfaces selectively recognized S. aureus, whereas the nanosheets bearing a carboxymethylated dextran phase selectively recognized E. coli O157:H7 with high binding affinity. The bacterial binding sites recognized by the artificial antibodies were thoroughly identified by experiments and molecular dynamics simulations, revealing the significance of their multivalent interactions with the bacterial membrane components for selective recognition. The luminescent WS2 artificial antibodies could rapidly detect the bacteria at a single copy from human serum without any purification and amplification. Moreover, the MoSe2 artificial antibodies selectively killed the pathogenic bacteria in the wounds of infected mice under light irradiation, leading to effective wound healing. This work demonstrates the potential of TMD artificial antibodies as an alternative to antibodies for sensing and therapy.


Assuntos
Antibacterianos/uso terapêutico , Infecções por Escherichia coli/tratamento farmacológico , Substâncias Luminescentes/uso terapêutico , Nanoestruturas/uso terapêutico , Animais , Antibacterianos/química , Antibacterianos/efeitos da radiação , Dextranos/química , Escherichia coli O157/efeitos dos fármacos , Escherichia coli O157/isolamento & purificação , Luz , Substâncias Luminescentes/química , Substâncias Luminescentes/efeitos da radiação , Camundongos , Simulação de Dinâmica Molecular , Molibdênio/química , Molibdênio/efeitos da radiação , Molibdênio/uso terapêutico , Nanoestruturas/química , Nanoestruturas/efeitos da radiação , Terapia Fototérmica , Compostos de Selênio/química , Compostos de Selênio/efeitos da radiação , Compostos de Selênio/uso terapêutico , Pele/microbiologia , Análise Espectral Raman , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/isolamento & purificação , Sulfetos/química , Sulfetos/efeitos da radiação , Sulfetos/uso terapêutico , Compostos de Tungstênio/química , Compostos de Tungstênio/efeitos da radiação , Compostos de Tungstênio/uso terapêutico , Cicatrização/efeitos dos fármacos
5.
Adv Mater ; 33(22): e2101376, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33890691

RESUMO

Antibodies are widely used as recognition elements in sensing and therapy, but they suffer from poor stability, long discovery time, and high cost. Herein, a facile approach to create antibody mimics with flexible recognition phases and luminescent rigid scaffolds for the selective recognition, detection, and inactivation of pathogenic bacteria is reported. Tripeptides with a nitriloacetate-Cu group are spontaneously assembled on transition metal dichalcogenide (TMD) nanosheets via coordination bonding, providing a diversity of TMD-tripeptide assembly (TPA) antibody mimics. TMD-TPA antibody mimics can selectively recognize various pathogenic bacteria with nanomolar affinities. The bacterial binding sites for TMD-TPA are identified by experiments and molecular dynamics simulations, revealing that the dynamic and multivalent interactions of artificial antibodies play a crucial role for their recognition selectivity and affinity. The artificial antibodies allow the rapid and selective detection of pathogenic bacteria at single copy in human serum and urine, and their effective inactivation for therapy of infected mice. This work demonstrates the potential of TMD-TPA antibody mimics as an alternative to natural antibodies for sensing and therapy.


Assuntos
Nanoestruturas , Animais , Anticorpos , Camundongos , Peptoides
6.
Biosens Bioelectron ; 165: 112401, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32729521

RESUMO

Non-covalent adsorption and desorption of oligonucleotides on two-dimensional nanosheets are widely employed to design nanobiosensors for the rapid optical detection of targets. A precise control over the weak interactions between nanosheet interfaces and oligonucleotides is crucial for a high-sensing performance. Herein, the interface of ultrathin WS2 nanosheets used as a fluorescence quencher was engineered by four different dextran polymers in an aqueous solution to control the adsorption kinetics and thermodynamics of the DNA probe. The WS2 nanosheets, functionalized by the carboxyl group-bearing dextran (CM-dex-WS2) or the trimethylammonium-modified dextran (TMA-dex-WS2), exhibited 3.6-fold faster adsorption rates of the fluorescein-labeled DNA probe (FAM-DNA), which led to the effective fluorescence quenching of FAM, compared to the nanosheets functionalized with pristine dextran (dex-WS2) or the hydrophobic phenoxy groups-bearing dextran (PhO-dex-WS2). Isothermal titration calorimetry measurements showed that the adsorption strength of FAM-DNA for CM-dex-WS2 was one order of magnitude greater than its hybridization energy for a target microRNA (miR-29a) that is well-known as an Alzheimer's disease (AD) biomarker, leading to the unfavorable desorption of the DNA probe from the surface. In contrast, TMA-dex-WS2 exhibited the proper adsorption strength of FAM-DNA, which was lower than its hybridization energy for miR-29a, leading to its favorable desorption from the nanosheet surface along with the noticeable restoration of the quenched fluorescence after its hybridization with miR-29a. Finally, the interface modulation of WS2 nanosheets allowed the selective and sensitive recognition of miR-29a against non-complementary RNA and single base-mismatched RNA in human serum via increases in target-specific fluorescence.


Assuntos
Doença de Alzheimer , Técnicas Biossensoriais , Nanoestruturas , Doença de Alzheimer/diagnóstico , Biomarcadores , Humanos , Oligonucleotídeos
7.
Nat Commun ; 9(1): 2549, 2018 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-29959329

RESUMO

The ability to control the dimensions and properties of nanomaterials is fundamental to the creation of new functions and improvement of their performances in the applications of interest. Herein, we report a strategy based on glucan multivalent interactions for the simultaneous exfoliation and functionalization of two-dimensional transition metal dichalcogenides (TMDs) in an aqueous solution. The multivalent hydrogen bonding of dextran with bulk TMDs (WS2, WSe2, and MoSe2) in liquid exfoliation effectively produces TMD monolayers with binding multivalency for pathogenic bacteria. Density functional theory simulation reveals that the multivalent hydrogen bonding between dextran and TMD monolayers is very strong and thermodynamically favored (ΔEb = -0.52 eV). The resulting dextran/TMD hybrids (dex-TMDs) exhibit a stronger affinity (Kd = 11 nM) to Escherichia coli O157:H7 (E. coli) than E. coli-specific antibodies and aptamers. The dex-TMDs can effectively detect a single copy of E. coli based on their Raman signal.


Assuntos
Técnicas Biossensoriais , Calcogênios/química , Complexos de Coordenação/química , Dextranos/química , Escherichia coli O157/isolamento & purificação , Nanoestruturas/química , Anticorpos , Ligação de Hidrogênio , Molibdênio/química , Nanoestruturas/ultraestrutura , Teoria Quântica , Sensibilidade e Especificidade , Análise Espectral Raman , Termodinâmica , Tungstênio/química , Água/química
8.
Small ; 14(16): e1800026, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29570235

RESUMO

There is an increasing demand for control over the dimensions and functions of transition metal dichalcogenides (TMDs) in aqueous solution toward biological and medical applications. Herein, an approach for the exfoliation and functionalization of TMDs in water via modulation of the hydrophobic interaction between poly(ε-caprolactone)-b-poly(ethylene glycol) (PCL-b-PEG) and the basal planes of TMDs is reported. Decreasing the hydrophobic PCL length of PCL-b-PEG from 5000 g mol-1 (PCL5000 ) to 460 g mol-1 (PCL460 ) significantly increases the exfoliation efficiency of TMD nanosheets because the polymer-TMD hydrophobic interaction becomes dominant over the polymer-polymer interaction. The TMD nanosheets exfoliated by PCL460 -b-PEG5000 (460-WS2 , 460-WSe2 , 460-MoS2 , and 460-MoSe2 ) show excellent and prolonged scavenging activity for reactive oxygen species (ROS), but each type of TMD displays a different scavenging tendency against hydroxyl, superoxide, and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radicals. A mechanistic study based on electron paramagnetic resonance spectroscopy and density functional theory simulations suggests that radical-mediated oxidation of TMDs and hydrogen transfer from the oxidized TMDs to radicals are crucial steps for ROS scavenging by TMD nanosheets. As-prepared 460-TMDs are able to effectively scavenge ROS in HaCaT human keratinocytes, and also exhibit excellent biocompatibility.


Assuntos
Nanoestruturas/química , Polímeros/química , Espécies Reativas de Oxigênio/química , Elementos de Transição/química , Linhagem Celular , Humanos , Radical Hidroxila/química , Superóxidos/química
9.
ACS Appl Mater Interfaces ; 9(14): 12316-12323, 2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28319663

RESUMO

Modulating the dimensions and phases of transition metal dichalcogenides is of great interest to enhance their intrinsic properties or to create new physicochemical properties. Herein, we report an effective approach to synthesize 2H-WS2 quantum dots (QDs) via the dimension and phase engineering of 1T-WS2 nanosheets. The solvothermal reaction of chemically exfoliated 1T-WS2 nanosheets in N-methyl-2-pyrrolidone (NMP) under an N2 atmosphere induced their chopping and phase transition at lower temperature to produce 2H-WS2 QDs with a high quantum yield (5.5 ± 0.3%). Interestingly, this chopping and phase transition process showed strong dependency on solvent; WS2 QDs were not produced in other solvents such as 1,4-dioxane and dimethyl sulfoxide. Mechanistic investigations suggested that NMP radicals played a crucial role in the effective production of 2H-WS2 QDs from 1T-WS2 nanosheets. WS2 QDs were successfully applied for the selective, sensitive, and rapid detection of dopamine in human serum (4 min, as low as 23.8 nM). The intense fluorescence of WS2 QDs was selectively quenched upon the addition of dopamine and Au3+ ions due to fluorescence resonance energy transfer between WS2 QDs and the quickly formed Au nanoparticles. This new sensing principle enabled us to discriminate dopamine from dopamine-derivative neurotransmitters including epinephrine and norepinephrine, as well as other interference compounds.


Assuntos
Pontos Quânticos , Transferência Ressonante de Energia de Fluorescência , Humanos , Neurotransmissores
10.
ACS Nano ; 10(5): 5346-53, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27136042

RESUMO

It has been of great interest to measure the activity of acetylcholinesterase (AChE) and its inhibitor, as AChE is known to accelerate the aggregation of the amyloid beta peptides that underlie Alzheimer's disease. Herein, we report the development of graphene oxide (GO) fluorescence-based biosensors for the detection of AChE activity and AChE inhibitors. To this end, GO was non-covalently functionalized with phenoxy-modified dextran (PhO-dex-GO) through hydrophobic interaction; the resulting GO showed excellent colloidal stability and intense fluorescence in various aqueous solutions as compared to pristine GO and the GO covalently functionalized with dextran. The fluorescence of PhO-dex-GO remarkably increased as AChE catalyzed the hydrolysis of acetylthiocholine (ATCh) to give thiocholine and acetic acid. It was found that the turn-on fluorescence response of PhO-dex-GO to AChE activity was induced by protonation of carboxyl groups on it from the product of the enzymatic hydrolysis reaction, acetic acid. On the basis of its turn-on fluorescence response, PhO-dex-GO was able to report kinetic and thermodynamic parameters involving a maximum velocity, a Michaelis constant, and an inhibition dissociation constant for AChE activity and inhibition. These parameters enable us to determine the activity of AChE and the efficiency of the inhibitor.


Assuntos
Acetilcolinesterase/química , Peptídeos beta-Amiloides , Técnicas Biossensoriais , Grafite , Acetiltiocolina , Inibidores da Colinesterase , Óxidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA