Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2402580, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39354694

RESUMO

Cas12j, a hypercompact and efficient Cas protein, has potential for use in CRISPR diagnostics, but has not yet been used because the trans-cleavage activity of Cas12j is veiled. Here, the trans-cleavage behavior of Cas12j1, 2, and 3 variants and evaluate their suitability for nucleic acid detection is unveiled. The target preferences and mismatch specificities of the Cas12j variants are precisely investigated and the optimal Cas12j reaction conditions are determined. As a result, the EXP-J assay for miRNA detection by harnessing the robust trans-cleavage activity of Cas12j on short ssDNA is developed. The EXP-J method demonstrates exceptional detection capabilities for miRNAs, proving that Cas12j can be a pivotal component in molecular diagnostics. Furthermore, the translational potential of the EXP-J assay is validated by detecting oncogenic miRNAs in plasma samples from lung cancer patients. This investigation not only elucidates the trans-cleavage characteristics of Cas12j variants, but also advances the Cas12j-based diagnostic toolkit.

2.
Nat Biotechnol ; 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39375445

RESUMO

Sequencing of messenger RNA (mRNA) found in extracellular vesicles (EVs) in liquid biopsies can provide clinical information such as somatic mutations, resistance profiles and tumor recurrence. Despite this, EV mRNA remains underused due to its low abundance in liquid biopsies, and large sample volumes or specialized techniques for analysis are required. Here we introduce Self-amplified and CRISPR-aided Operation to Profile EVs (SCOPE), a platform for EV mRNA detection. SCOPE leverages CRISPR-mediated recognition of target RNA using Cas13 to initiate replication and signal amplification, achieving a sub-attomolar detection limit while maintaining single-nucleotide resolution. As a proof of concept, we designed probes for key mutations in KRAS, BRAF, EGFR and IDH1 genes, optimized protocols for single-pot assays and implemented an automated device for multi-sample detection. We validated SCOPE's ability to detect early-stage lung cancer in animal models, monitored tumor mutational burden in patients with colorectal cancer and stratified patients with glioblastoma. SCOPE can expedite readouts, augmenting the clinical use of EVs in precision oncology.

3.
Small ; : e2406094, 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39422169

RESUMO

Extracellular vesicles (EVs) have emerged as valuable biological materials for treating intractable diseases. Extensive studies are conducted on EVs derived from various cellular sources. In this study, EVs derived from Lactobacillus reuteri (L. reuteri), a probiotic, exhibit remarkable cancer therapeutic efficacy when administered orally is reported. These L. reuteri-derived EVs (REVs) demonstrate stability in the gastrointestinal tract and exert significant anti-tumor effects. Using A549 cells and murine models, we confirmed that REVs mediate their therapeutic effects by modulating apoptotic signaling pathways. Furthermore, the combination of REV with drugs enhances tumor ablation and induces immunogenic cell death. In a mouse model, oral administration of REVs encapsulating indocyanine green followed by photothermal therapy led to complete tumor elimination within 32 days. REVs represent a promising biological therapeutic platform for cancer treatment, either independently or in combination with other therapies, depending on the treatment objectives.

4.
Mikrochim Acta ; 191(11): 715, 2024 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-39472332

RESUMO

A novel approach is introduced using nanoplasmonic microarray-based solid-phase recombinase polymerase amplification (RPA) that offers high sensitivity and multiplexing capabilities for gene detection. Nanoplasmonic microarrays were developed through one-step immobilization of streptavidin/biotin primers and fine-tuning the amplicon size to achieve high plasmon-enhanced fluorescence (PEF) on the nanoplasmonic substrate, thereby improving sensitivity. The specificity and sensitivity of solid-phase RPA on nanoplasmonic microarrays was evaluated in detecting E, N, and RdRP genes of SARS-CoV-2. High specificity was achieved by minimizing primer-dimer formation and employing a stringent washing process and high sensitivity obtained with a limit of detection of four copies per reaction within 30 min. In clinical testing with nasopharyngeal swab samples (n = 30), the nanoplasmonic microarrays demonstrated a 100% consistency with the PCR results for detecting SARS-CoV-2, including differentiation of Omicron mutations BA.1 and BA.2. This approach overcomes the sensitivity issue of solid-phase amplification, as well as offers rapidity, high multiplexing capabilities, and simplified equipment by using isothermal reaction, making it a valuable tool for on-site molecular diagnostics.


Assuntos
COVID-19 , SARS-CoV-2 , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Humanos , COVID-19/diagnóstico , COVID-19/virologia , Técnicas de Amplificação de Ácido Nucleico/métodos , Limite de Detecção , Sensibilidade e Especificidade
5.
Adv Sci (Weinh) ; : e2407621, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39308180

RESUMO

Gastric cancer (GC) is recognized as the fifth most prevalent malignant tumor worldwide. It is characterized by diverse clinical symptoms, treatment responses, and prognoses. In GC prognosis, the promotion of epithelial-mesenchymal transition (EMT) fosters cancer cell invasion and metastasis, thereby triggering the dissemination of tumor cells. This study proposes a nucleic acid amplification circuit-based hydrogel (NACH) assay for identifying exosomal miRNA derived from metastatic GC. The NACH assay employs the rolling circle amplification method and targets miRNA-21, a tumor-related oncogene, and miRNA-99a, which promotes EMT. Specific amplification probes for each target are immobilized within the hydrogel, enabling a streamlined, one-step amplification reaction. The NACH assay exhibits a detection limit of 1 fm for miRNA-21 and miRNA-99a, thereby enabling rapid and highly sensitive on-site detection. Performance evaluation using exosomal miRNA extracted from cell culture media, mouse plasma, and human plasma revealed fluorescence intensity patterns similar to those obtained in qRT-PCR. Furthermore, deploying a custom-developed portable fluorometer for the NACH assay allows for diagnostic performance assessment and point-of-care testing using clinical samples from GC patients. These findings emphasize the potential of the NACH assay to be used as a robust tool for the genetic diagnosis of GC based on exosome detection.

6.
Nanoscale ; 16(23): 11318-11326, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38804270

RESUMO

The escalating global threat of infectious diseases, including monkeypox virus (MPXV), necessitates advancements in point-of-care diagnostics, moving beyond the constraints of conventional methods tethered to centralized laboratories. Here, we introduce multiple CRISPR RNA (crRNA)-based biosensors that can directly detect MPXV within 35 minutes without pre-amplification, leveraging the enhanced sensitivity and antifouling attributes of the BSA-based nanocomposite. Multiple crRNAs, strategically targeting diverse regions of the F3L gene of MPXV, are designed and combined to amplify Cas12a activation and its collateral cleavage of reporter probes. Notably, our electrochemical sensors exhibit the detection limit of 669 fM F3L gene without amplification, which is approximately a 15-fold improvement compared to fluorescence detection. This sensor also shows negligible changes in peak current after exposure to complex biological fluids, such as whole blood and serum, maintaining its sensitivity at 682 fM. This sensitivity is nearly identical to the conditions when only the F3L gene was present in PBS. In summary, our CRISPR-based electrochemical biosensors can be utilized as a high-performance diagnostic tool in resource-limited settings, representing a transformative leap forward in point-of-care testing. Beyond infectious diseases, the implications of this technology extend to various molecular diagnostics, establishing itself as a rapid, accurate, and versatile platform for detection of target analytes.


Assuntos
Técnicas Biossensoriais , Sistemas CRISPR-Cas , Técnicas Eletroquímicas , Nanocompostos , Técnicas Biossensoriais/métodos , Nanocompostos/química , Técnicas Eletroquímicas/métodos , Humanos , Proteínas Associadas a CRISPR/metabolismo , Proteínas Associadas a CRISPR/genética , Limite de Detecção , Proteínas de Bactérias/genética , Animais , Endodesoxirribonucleases/metabolismo , Incrustação Biológica/prevenção & controle
7.
Biosens Bioelectron ; 259: 116375, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38749283

RESUMO

Since the outbreak of the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) at the end of 2019, the spread of the virus has posed a significant threat to public health and the global economy. This work proposed a one-step, dual-structure-switching aptamer-mediated signal amplification cascade for rapid and sensitive detection of the SARS-CoV-2 nucleocapsid protein. This system consisted of two DNA aptamers with structure-switching functionality and fuel DNA, where a cascade of strand hybridization and displacement triggered fluorescence generation and signal amplification. This aptamer-based amplification cascade required neither an amplification stage using enzymes nor pre-processing steps such as washing, viral isolation, and gene extraction. The assay could distinguish SARS-CoV-2 from other respiratory viruses and detect up to 1.0 PFU/assay of SARS-CoV-2 within 30 min at room temperature. In 35 nasopharyngeal clinical samples, the assay accurately assessed 25 positive and 10 negative clinical swab samples, which were confirmed using quantitative polymerase chain reaction. The strategy reported herein can help detect newly emerging pathogens and biomarkers of various diseases in liquid samples. In addition, the developed detection system consisting of only DNA and fluorophores can be widely integrated into liquid biopsy platforms for disease diagnosis.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , COVID-19 , Técnicas de Amplificação de Ácido Nucleico , SARS-CoV-2 , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/genética , Humanos , Técnicas Biossensoriais/métodos , Aptâmeros de Nucleotídeos/química , COVID-19/virologia , COVID-19/diagnóstico , Técnicas de Amplificação de Ácido Nucleico/métodos , Proteínas do Nucleocapsídeo de Coronavírus/genética , Fosfoproteínas/química , Limite de Detecção , Teste de Ácido Nucleico para COVID-19/métodos , Teste de Ácido Nucleico para COVID-19/instrumentação
8.
Small ; 20(35): e2308317, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38564785

RESUMO

Proactive management of foodborne illness requires routine surveillance of foodborne pathogens, which requires developing simple, rapid, and sensitive detection methods. Here, a strategy is presented that enables the detection of multiple foodborne bacteria using a 3D nanostructure swab and deep learning-based Raman signal classification. The nanostructure swab efficiently captures foodborne pathogens, and the portable Raman instrument directly collects the Raman signals of captured bacteria. a deep learning algorithm has been demonstrated, 1D convolutional neural network with binary labeling, achieves superior performance in classifying individual bacterial species. This methodology has been extended to mixed bacterial populations, maintaining accuracy close to 100%. In addition, the gradient-weighted class activation mapping method is used to provide an investigation of the Raman bands for foodborne pathogens. For practical application, blind tests are conducted on contaminated kitchen utensils and foods. The proposed technique is validated by the successful detection of bacterial species from the contaminated surfaces. The use of a 3D nanostructure swab, portable Raman device, and deep learning-based classification provides a powerful tool for rapid identification (≈5 min) of foodborne bacterial species. The detection strategy shows significant potential for reliable food safety monitoring, making a meaningful contribution to public health and the food industry.


Assuntos
Aprendizado Profundo , Microbiologia de Alimentos , Nanoestruturas , Análise Espectral Raman , Análise Espectral Raman/métodos , Nanoestruturas/química , Doenças Transmitidas por Alimentos/microbiologia , Bactérias/isolamento & purificação
9.
Biosens Bioelectron ; 253: 116147, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38452568

RESUMO

We herein present a multifunctional self-priming hairpin probe-based isothermal amplification, termed MSH, enabling one-pot detection of target nucleic acids. The sophisticatedly designed multifunctional self-priming hairpin (MSH) probe recognizes the target and rearranges to prime itself, triggering the amplification reaction powered by the continuously repeated extension, nicking, and target recycling. As a consequence, a large number of double-stranded DNA (dsDNA) amplicons are produced that could be monitored in real-time using a dsDNA-intercalating dye. Based on this unique design approach, the nucleocapsid (N) and the open reading frame 1 ab (ORF1ab) genes of SARS-CoV-2 were successfully detected down to 1.664 fM and 0.770 fM, respectively. The practical applicability of our method was validated by accurately diagnosing 60 clinical samples with 93.33% sensitivity and 96.67% specificity. This isothermal one-pot MSH technique holds great promise as a point-of-care testing protocol for the reliable detection of a wide spectrum of pathogens, particularly in resource-limited settings.


Assuntos
Técnicas Biossensoriais , COVID-19 , Ácidos Nucleicos , Humanos , COVID-19/diagnóstico , Teste para COVID-19 , Técnicas de Amplificação de Ácido Nucleico/métodos , SARS-CoV-2/genética , Técnicas Biossensoriais/métodos , Sensibilidade e Especificidade
11.
Nat Commun ; 15(1): 1366, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355558

RESUMO

Efficient pathogen enrichment and nucleic acid isolation are critical for accurate and sensitive diagnosis of infectious diseases, especially those with low pathogen levels. Our study introduces a biporous silica nanofilms-embedded sample preparation chip for pathogen and nucleic acid enrichment/isolation. This chip features unique biporous nanostructures comprising large and small pore layers. Computational simulations confirm that these nanostructures enhance the surface area and promote the formation of nanovortex, resulting in improved capture efficiency. Notably, the chip demonstrates a 100-fold lower limit of detection compared to conventional methods used for nucleic acid detection. Clinical validations using patient samples corroborate the superior sensitivity of the chip when combined with the luminescence resonance energy transfer assay. The enhanced sample preparation efficiency of the chip, along with the facile and straightforward synthesis of the biporous nanostructures, offers a promising solution for polymer chain reaction-free detection of nucleic acids.


Assuntos
Nanoestruturas , Ácidos Nucleicos , Humanos , Microfluídica , Dióxido de Silício , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Técnicas de Amplificação de Ácido Nucleico
12.
Biosens Bioelectron ; 251: 116102, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38350240

RESUMO

We present a label-free colorimetric CRISPR/Cas-based method enabling affordable molecular diagnostics for SARS-CoV-2. This technique utilizes 3,3'-diethylthiadicarbocyanine iodide (DISC2(5)) which exhibits a distinct color transition from purple to blue when it forms dimers by inserting into the duplex of the thymidine adenine (TA) repeat sequence. Loop-mediated isothermal amplification (LAMP) or recombinase polymerase amplification (RPA) was used to amplify target samples, which were subsequently subjected to the CRISPR/Cas12a system. The target amplicons would activate Cas12a to degrade nearby TA repeat sequences, preserving DISC2(5) in its free form to display purple as opposed to blue in the absence of the target. Based on this design approach, SARS-CoV-2 RNA was colorimetrically detected very sensitively down to 2 copies/µL, and delta and omicron variants of SARS-CoV-2 were also successfully identified. The practical diagnostic utility of this method was further validated by reliably identifying 179 clinical samples including 20 variant samples with 100% clinical sensitivity and specificity. This technique has the potential to become a promising CRISPR-based colorimetric platform for molecular diagnostics of a wide range of target pathogens.


Assuntos
Técnicas Biossensoriais , COVID-19 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Sistemas CRISPR-Cas/genética , Colorimetria , RNA Viral , Adenina , Técnicas de Amplificação de Ácido Nucleico
13.
Nat Commun ; 15(1): 711, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331881

RESUMO

Development of coating technologies for electrochemical sensors that consistently exhibit antifouling activities in diverse and complex biological environments over extended time is vital for effective medical devices and diagnostics. Here, we describe a micrometer-thick, porous nanocomposite coating with both antifouling and electroconducting properties that enhances the sensitivity of electrochemical sensors. Nozzle printing of oil-in-water emulsion is used to create a 1 micrometer thick coating composed of cross-linked albumin with interconnected pores and gold nanowires. The layer resists biofouling and maintains rapid electron transfer kinetics for over one month when exposed directly to complex biological fluids, including serum and nasopharyngeal secretions. Compared to a thinner (nanometer thick) antifouling coating made with drop casting or a spin coating of the same thickness, the thick porous nanocomposite sensor exhibits sensitivities that are enhanced by 3.75- to 17-fold when three different target biomolecules are tested. As a result, emulsion-coated, multiplexed electrochemical sensors can carry out simultaneous detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleic acid, antigen, and host antibody in clinical specimens with high sensitivity and specificity. This thick porous emulsion coating technology holds promise in addressing hurdles currently restricting the application of electrochemical sensors for point-of-care diagnostics, implantable devices, and other healthcare monitoring systems.


Assuntos
Incrustação Biológica , Técnicas Biossensoriais , Nanocompostos , Porosidade , Emulsões , Anticorpos , Técnicas Eletroquímicas
14.
Food Chem ; 438: 138043, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37992606

RESUMO

Listeria monocytogenes, a severe foodborne pathogen causing severe diseases underscores the necessity for the development of a detection system with high specificity, sensitivity and utility. Herein, the PoreGlow system, based on split green fluorescent protein (GFP), was developed and assessed for the fast and accurate detection of L. monocytogenes. Split GFP-encapsulated liposomes were optimized for targeted analysis. The system utilizes listeriolysin O (LLO), a toxin produced by L. monocytogenes that enlarges the pores split GFP-encapsulated liposomes, to detect L. monocytogenes by measuring the fluorescent signal generated when the encapsulated GFP is released and reacted with the externally added fragment of the split GFP. The system exhibited a limit of detection of 0.17 µg/ml for LLO toxin and 10 CFU/mL for L. monocytogenes with high sensitivity and specificity and no cross-reactivity with other bacteria. The PoreGlow system is practical, rapid, and does not require sample pre-treatment, making it a promising tool for the early detection of L. monocytogenes in food products, which is crucial for preventing outbreaks and protecting public health.


Assuntos
Listeria monocytogenes , Listeriose , Humanos , Listeria monocytogenes/genética , Listeriose/metabolismo , Listeriose/microbiologia , Proteínas de Fluorescência Verde/genética , Lipossomos/metabolismo , Proteínas Hemolisinas/genética
15.
Nat Commun ; 14(1): 8033, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38052830

RESUMO

Endonucleases have recently widely used in molecular diagnostics. Here, we report a strategy to exploit the properties of Argonaute (Ago) proteins for molecular diagnostics by introducing an artificial nucleic acid circuit with Ago protein (ANCA) method. The ANCA is designed to perform a continuous autocatalytic reaction through cross-catalytic cleavage of the Ago protein, enabling one-step, amplification-free, and isothermal DNA detection. Using the ANCA method, carbapenemase-producing Klebsiella pneumoniae (CPKP) are successfully detected without DNA extraction and amplification steps. In addition, we demonstrate the detection of carbapenem-resistant bacteria in human urine and blood samples using the method. We also demonstrate the direct identification of CPKP swabbed from surfaces using the ANCA method in conjunction with a three-dimensional nanopillar structure. Finally, the ANCA method is applied to detect CPKP in rectal swab specimens from infected patients, achieving sensitivity and specificity of 100% and 100%, respectively. The developed method can contribute to simple, rapid and accurate diagnosis of CPKP, which can help prevent nosocomial infections.


Assuntos
Antibacterianos , Ácidos Nucleicos , Humanos , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , beta-Lactamases/genética , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Anticorpos Anticitoplasma de Neutrófilos/metabolismo , Ácidos Nucleicos/metabolismo , Bactérias/genética , DNA/metabolismo , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Testes de Sensibilidade Microbiana
16.
BMC Infect Dis ; 23(1): 732, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891503

RESUMO

OBJECTIVE: We aimed to compare the adaptive immune response in individuals with or without prior SARS-CoV-2 infections following the administration of mRNA-based COVID-19 vaccines. METHODS: A total of 54 participants with ages ranging from 37 to 56 years old, consisting of 23 individuals without a history of SARS-CoV-2 infection (uninfected group) and 31 individuals with prior infection of SARS-CoV-2 (infected group) who have received two doses of mRNA SARS-CoV-2 vaccines were enrolled in this study. We measured the IFN-γ level upon administration of BNT162b2 (PF) or mRNA-1273 (MO) by QuantiFERON SARS-CoV-2. The production of neutralizing antibodies was evaluated by a surrogate virus neutralization assay, and the neutralizing capacity was assessed by a plaque reduction neutralization test (PRNT50). The immune response was compared between the two groups. RESULTS: A significantly higher level of IFN-γ (p < 0.001) and neutralization antibodies (p < 0.001) were observed in the infected group than those in the uninfected group following the first administration of vaccines. The infected group demonstrated a significantly higher PRNT50 titer than the uninfected group against the Wuhan strain (p < 0.0001). Still, the two groups were not significantly different against Delta (p = 0.07) and Omicron (p = 0.14) variants. Following the second vaccine dose, T- and B-cell levels were not significantly increased in the infected group. CONCLUSION: A single dose of mRNA-based COVID-19 vaccines would boost immune responses in individuals who had previously contracted SARS-CoV-2.


Assuntos
COVID-19 , Humanos , Adulto , Pessoa de Meia-Idade , COVID-19/prevenção & controle , Vacinas contra COVID-19 , SARS-CoV-2 , Vacina BNT162 , Vacinação , Anticorpos Neutralizantes , Anticorpos Antivirais
17.
Biosens Bioelectron ; 241: 115700, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37757509

RESUMO

The simultaneous infection with a tripledemic-simultaneous infection with influenza A pH1N1 virus (Flu), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and respiratory syncytial virus (RSV)-necessitates the development of accurate and fast multiplex diagnostic tests. The coronavirus disease 2019 (COVID-19) pandemic has emphasized the importance of virus detection. Field-effect transistor (FET)-based immuno-biosensors have a short detection time and do not require labeling or polymerase chain reaction. This study demonstrates the rapid, sensitive detection of influenza A pH1N1, SARS-CoV-2, and RSV using a multiplex immunosensor based on a dual-gate oxide semiconductor thin-film transistor (TFT), a type of FET. The dual-gate oxide TFT was modified by adjusting both top and bottom gate insulators to improve capacitive coupling to approximately 120-fold amplification, exhibiting a high pH sensitivity of about 10 V/pH. The dual-gate oxide TFT-based immunosensor detected the target proteins (hemagglutinin (HA) protein of Flu, spike 1 (S1) protein of SARS-CoV-2, and fusion protein of RSV) of each virus, with a limit of detection of approximately 1 fg/mL. Cultured viruses in phosphate-buffered saline or artificial saliva and clinical nasopharynx samples were detected in 1-µL sample volumes within 60 s. This promising diagnosis could be potentially as point-of-care tests to facilitate a prompt response to future pandemics with high sensitivity and multiplexed detection without pretreatment.

18.
Nano Converg ; 10(1): 45, 2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37715925

RESUMO

The current standard method of diagnosing coronavirus disease 2019 (COVID-19) involves uncomfortable and invasive nasopharyngeal (NP) sampling using cotton swabs (CS), which can be unsuitable for self-testing. Although mid-turbinate sampling is an alternative, it has a lower diagnostic yield than NP sampling. Nasal wash (NW) has a similar diagnostic yield to NP sampling, but is cumbersome to perform. In this study, we introduce a 3D printed fluidic swab (3DPFS) that enables easy NW sampling for COVID-19 testing with improved diagnostic yield. The 3DPFS comprises a swab head, microchannel, and socket that can be connected to a syringe containing 250 µL of NW solution. The 3DPFS efficiently collects nasal fluid from the surface of the nasal cavity, resulting in higher sensitivity than CS for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This was confirmed by both reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and lateral flow assays (LFA) in virus-spiked nasal samples and clinical samples. Additionally, users reported greater comfort when using the 3DPFS compared to CS. These findings suggest that the 3DPFS can improve the performance of COVID-19 testing by facilitating efficient and less painful nasal sample collection.

19.
Mater Horiz ; 10(10): 4571-4580, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37581348

RESUMO

The recent outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted the need for rapid, user-friendly nucleic acid testing that involves simple but efficient RNA extraction. Here, we present a charge-shifting polyplex as an RNA extraction carrier for advanced diagnosis of infectious viral diseases. The polyplex comprises poly(2-(dimethylamino) ethyl acrylate) (pDMAEA) electrostatically conjugated with RNA. The pDMAEA film can rapidly dissolve in the viral RNA solution, promoting immediate binding with RNA to form the polyplex, which enables the efficient capture of a substantial quantity of RNA. Subsequently, the captured RNA can be readily released by the quick hydrolysis of pDMAEA at the onset of quantitative reverse transcription-polymerase chain reaction (qRT-PCR), streamlining the entire process from RNA extraction to analysis. The developed method requires only 5 min of centrifugation and enables the detection of RNA in a one-pot setup. Moreover, the proposed method is fully compatible with high-speed qRT-PCR kits and can identify clinical samples within 1 h including the entire extraction to detection procedure. Indeed, the method successfully detected influenza viruses, SARS-CoV-2, and their delta and omicron variants in 260 clinical samples with a sensitivity of 99.4% and specificity of 98.9%. This rapid, user-friendly polyplex-based approach represents a significant breakthrough in molecular diagnostics.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , RNA Viral/genética , RNA Viral/análise , COVID-19/diagnóstico , Teste para COVID-19
20.
Viruses ; 15(8)2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37632098

RESUMO

In this study, we evaluated the effectiveness of the bivalent mRNA COVID-19 vaccines against the Omicron variant in individuals with or without prior SARS-CoV-2 infection history. We assessed the SARS-CoV-2-specific neutralizing antibody in serum samples by surrogate virus neutralizing assay (sVNT) and determined the serum's neutralizing capacity against the Omicron BA.5 by a plaque reduction neutralizing test (PRNT50). The results of the sVNT assay demonstrate a higher percentage of inhibition of the serum samples from the infected group than from the uninfected group (p = 0.01) before the bivalent vaccination but a similarly high percentage of inhibition after the vaccination. Furthermore, the results of the PRNT50 assay demonstrate a higher neutralizing capacity of the serum samples against Omicron BA.5 in the infected group compared to the uninfected group, both before and after the bivalent vaccine administration (p < 0.01 and p = 0.02 for samples collected before and after the bivalent vaccination, respectively). A higher neutralizing capacity of the serum samples against BA.5 following bivalent vaccination compared to those before vaccination suggests the efficacy of bivalent mRNA COVID-19 vaccines in triggering an immune response against the Omicron variant, particularly BA.5, regardless of infection history.


Assuntos
COVID-19 , Humanos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , SARS-CoV-2/genética , Anticorpos Antivirais , RNA Mensageiro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA