RESUMO
BACKGROUND: Otitis media (OM) is a major disease burden in Australian Aboriginal children, contributing to serious long-term health outcomes. We report a pilot analysis of OM in children attending an outreach ear and hearing clinic in a remote south Australian community over a two-year period. Our study focuses on longitudinal relationships between ear canal microbiota characteristics with nasopharyngeal microbiota, and clinical and treatment variables. RESULTS: Middle ear health status were assessed in 19 children (aged 3 months to 8 years) presenting in remote western South Australia and medical interventions were recorded. Over the two-year study period, chronic suppurative OM was diagnosed at least once in 7 children (37%), acute OM with perforation in 4 children (21%), OM with effusion in 11 children (58%), while only 1 child had no ear disease. Microbiota analysis of 19 children (51 sets of left and right ear canal swabs and nasopharyngeal swabs) revealed a core group of bacterial taxa that included Corynebacterium, Alloiococcus, Staphylococcus, Haemophilus, Turicella, Streptococcus, and Pseudomonas. Within-subject microbiota similarity (between ears) was significantly greater than inter-subject similarity, regardless of differences in ear disease (p = 0.0006). Longitudinal analysis revealed changes in diagnosis to be associated with more pronounced changes in microbiota characteristics, irrespective of time interval. Ear microbiota characteristics differed significantly according to diagnosis (P (perm) = 0.0001). Diagnoses featuring inflammation with tympanic membrane perforation clustering separately to those in which the tympanic membrane was intact, and characterised by increased Proteobacteria, particularly Haemophilus influenzae, Moraxella catarrhalis, and Oligella. While nasopharyngeal microbiota differed significantly in composition to ear microbiota (P (perm) = 0.0001), inter-site similarity was significantly greater in subjects with perforated tympanic membranes, a relationship that was associated with the relative abundance of H. influenzae in ear samples (rs = - 0.71, p = 0.0003). Longitudinal changes in ear microbiology reflected changes in clinical signs and treatment. CONCLUSIONS: Children attending the ear and hearing clinic in a remote Aboriginal community present with a broad spectrum of OM conditions and severities, consistent with other remote Aboriginal communities. Ear microbiota characteristics align with OM diagnosis and change with disease course. Nasopharyngeal microbiota characteristics are consistent with the contribution of acute upper respiratory infection to OM aetiology.
Assuntos
Bactérias/isolamento & purificação , Orelha Média/microbiologia , Orelha Média/patologia , Microbiota , Havaiano Nativo ou Outro Ilhéu do Pacífico/estatística & dados numéricos , Otite Média/microbiologia , Austrália/epidemiologia , Bactérias/classificação , Bactérias/genética , Bactérias/patogenicidade , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Estudos Longitudinais , Masculino , Nasofaringe/microbiologia , Otite Média/epidemiologia , Projetos Piloto , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/microbiologia , População Rural/estatística & dados numéricosRESUMO
OBJECTIVES: Diet-driven obesity is increasingly widespread. Its consequences pose major challenges to human health and health care systems. There are MAP kinase-interacting kinases (MNKs) in mice, MNK1 and MNK2. Studies have demonstrated that mice lacking either MNK1 or MNK2 were partially protected against high-fat diet (HFD)-induced weight gain and insulin resistance. The aims of this study were to evaluate the phenotype of mice lacking both MNKs when given an HFD, to assess whether pharmacological inhibition of MNK function also protects against diet-induced obesity (DIO) and its consequences and to probe the mechanisms underlying such protection. METHODS: Male wild-type (WT) C57Bl6 mice or mice lacking both MNK1 and MNK2 (double knockout, DKO) were fed an HFD or control diet (CD) for up to 16 weeks. In a separate study, WT mice were also given an HFD for 6 weeks, after which half were treated with the recently-developed MNK inhibitor ETC-206 daily for 10 more weeks while continuing an HFD. Metabolites and other parameters were measured, and the expression of selected mRNAs and proteins was assessed. RESULTS: MNK-DKO mice were almost completely protected from HFD-induced obesity. Higher energy expenditure (EE) in MNK-DKO mice was observed, which probably reflects the changes in a number of genes or proteins linked to lipolysis, mitochondrial function/biogenesis, oxidative metabolism, and/or ATP consumption. The MNK inhibitor ETC-206 also prevented HFD-induced weight gain, confirming that the activity of the MNKs facilitates weight gain due to excessive caloric consumption. CONCLUSIONS: Disabling MNKs in mice, either genetically or pharmacologically, strongly prevents weight gain on a calorie-rich diet. This finding likely results from increased energy utilisation, involving greater ATP consumption, mitochondrial oxidative metabolism, and other processes.
Assuntos
Proteínas Serina-Treonina Quinases/genética , Aumento de Peso/efeitos dos fármacos , Animais , Respiração Celular , Dieta Hiperlipídica , Metabolismo Energético , Insulina/metabolismo , Resistência à Insulina/genética , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Obesidade/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Aumento de Peso/genética , Aumento de Peso/fisiologiaRESUMO
There is an ever increasing body of evidence that demonstrates that paternal over-nutrition prior to conception programs impaired metabolic health in offspring. Here we examined whether paternal under-nutrition can also program impaired health in offspring and if any detrimental health outcomes in offspring could be prevented by micronutrient supplementation (vitamins and antioxidants). We discovered that restricting the food intake of male rodents reduced their body weight, fertility, increased sperm oxidative DNA lesions and reduced global sperm methylation. Under-nourished males then sired offspring with reduced postnatal weight and growth but somewhat paradoxically increased adiposity and dyslipidaemia, despite being fed standard chow. Paternal vitamin/antioxidant food fortification during under-nutrition not only normalised founder oxidative sperm DNA lesions but also prevented early growth restriction, fat accumulation and dyslipidaemia in offspring. This demonstrates that paternal under-nutrition reduces postnatal growth but increases the risk of obesity and metabolic disease in the next generation and that micronutrient supplementation during this period of under-nutrition is capable of restoring offspring metabolic health.
Assuntos
Desnutrição/genética , Síndrome Metabólica/genética , Adiposidade , Animais , Antioxidantes/administração & dosagem , Composição Corporal , Desenvolvimento Embrionário , Feminino , Alimentos Fortificados , Efeito Fundador , Infertilidade Masculina/etiologia , Infertilidade Masculina/genética , Insulina/sangue , Leptina/sangue , Lipídeos/sangue , Masculino , Desnutrição/complicações , Síndrome Metabólica/sangue , Síndrome Metabólica/etiologia , Camundongos Endogâmicos C57BL , Herança Paterna , Espécies Reativas de Oxigênio/metabolismo , Contagem de Espermatozoides , Motilidade dos EspermatozoidesRESUMO
PURPOSE: To investigate the impacts that a paternal high fat diet (HFD) has on embryology, ovarian/cumulus cell gene expression and COC metabolism from female offspring, using a mouse model. METHODS: Founder male mice were either fed a control diet (CD) or a HFD for 12 weeks. The HFD induced obesity but not diabetes, and founder males were then mated to normal weight CD fed female mice. Female offspring were maintained on a CD, super-ovulated, mated and the resultant zygotes were cultured to the blastocyst stage for embryo morphology, blastocyst cell number and apoptosis assessment. Ovaries and cumulus cells from offspring were collected for gene expression analysis of selected genes that maintain chromatin remodeling and endoplasmic reticulum (ER), metabolic and inflammatory homeostasis. Cumulus/oocyte complexes were also investigated for glucose uptake and lipid accumulation. RESULTS: Female offspring sired by obese fathers produced embryos with delayed development and impaired quality, displayed increases in ovarian expression of Glut1, Glut3 and Glut4, and an increase in cumulus cell expression of Glut4. Interestingly their COCs did take up more glucose, but did accumulate more lipid. CONCLUSIONS: A paternal HFD is associated with subfertility in female offspring despite the offspring being fed a CD and this subfertility is concomitant with ovarian/cumulus cell molecular alterations and increased lipid accumulation.
Assuntos
Blastocisto/patologia , Células do Cúmulo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Obesidade/fisiopatologia , Oócitos/metabolismo , Ovário/metabolismo , Animais , Blastocisto/metabolismo , Células do Cúmulo/patologia , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/etiologia , Oócitos/patologia , Ovário/patologia , Gravidez , Reação em Cadeia da Polimerase em Tempo Real , Sêmen/químicaRESUMO
Obesity and related comorbidities are becoming increasingly prevalent globally. In mice preconception paternal exposure to a high fat diet (HFD) impairs the metabolic and reproductive health of male offspring, despite their control diet (CD) consumption. However, offspring share lifestyle, including diet, with parents. We assessed if male offspring from HFD fathers have a heightened susceptibility to HFD-induced metabolic and reproductive derangements. This 2 × 2 design saw founder males (F0) and their offspring (F1) fed either a HFD or a nutritionally matched CD. Regardless of paternal diet, HFD fed male offspring had greater total body weight and adiposity. Offspring sired by a HFD male and fed a HFD were the heaviest, had the greatest adiposity and had the greatest concentration of serum cholesterol, triglyceride, HDL, and NEFA compared with CD sired/fed littermates. A synergistic increase in serum insulin was unmasked by both father/son HFD consumption, concomitant with increased sera glucose. Either a paternal or offspring HFD was associated with similar reductions to offspring sperm motility. Whereas sperm ROS concentrations and sperm-oocyte binding saw detrimental effects of both F0 HFD and F1 HFD with an interaction evident between both, culminating in the most impaired sperm parameters in this group. This indicates that metabolic and fertility disturbances in male offspring sired by HFD fathers are exacerbated by a "second-hit" of exposure to the same obesogenic environment postnatally. If translatable to human health, this suggests that adverse reproductive and metabolic outcomes may be amplified across generations through a shared calorie dense diet, relevant to the current worldwide obesity epidemic.
RESUMO
The periconceptual environment represents a critical window for programming fetal growth trajectories and susceptibility to disease; however, the underlying mechanism responsible for programming remains elusive. This study demonstrates a causal link between reduction of precompaction embryonic mitochondrial function and perturbed offspring growth trajectories and subsequent metabolic dysfunction. Incubation of embryos with carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP), which uncouples mitochondrial oxidative phosphorylation, significantly reduced mitochondrial membrane potential and ATP production in 8-cell embryos and the number of inner cell mass cells within blastocysts; however, blastocyst development was unchanged. This perturbed embryonic mitochondrial function was concomitant with reduced birth weight in female offspring following embryo transfer, which persisted until weaning. FCCP-treated females also exhibited increased adiposity at 4 wk, increased adiposity gain between 4 and 14 wk, glucose intolerance at 8 wk, and insulin resistance at 14 wk. Although FCCP-treated males also exhibited reduced glucose tolerance, but their insulin sensitivity and adiposity gain between 4 and 14 wk was unchanged. To our knowledge, this is one of the first studies to demonstrate that reducing mitochondrial function and, thus, decreasing ATP output in the precompacting embryo can influence offspring phenotype. This is of great significance as a large proportion of patients requiring assisted reproductive technologies are of advanced maternal age or have a high body mass index, both of which have been independently linked with perturbed early embryonic mitochondrial function.
Assuntos
Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/toxicidade , Fase de Clivagem do Zigoto/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Adiposidade/efeitos dos fármacos , Animais , Peso ao Nascer , Técnicas de Cultura Embrionária , Transferência Embrionária , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Tamanho da Ninhada de Vivíparos , Masculino , Metaloproteases/genética , Metaloproteases/metabolismo , Camundongos , Mitocôndrias/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-NatalRESUMO
Paternal health cues are able to program the health of the next generation however the mechanism for this transmission is unknown. Reactive oxygen species (ROS) are increased in many paternal pathologies, some of which program offspring health, and are known to induce DNA damage and alter the methylation pattern of chromatin. We therefore investigated whether a chemically induced increase of ROS in sperm impairs embryo, pregnancy and offspring health. Mouse sperm was exposed to 1500 µM of hydrogen peroxide (H2O2), which induced oxidative damage, however did not affect sperm motility or the ability to bind and fertilize an oocyte. Sperm treated with H2O2 delayed on-time development of subsequent embryos, decreased the ratio of inner cell mass cells (ICM) in the resulting blastocyst and reduced implantation rates. Crown-rump length at day 18 of gestation was also reduced in offspring produced by H2O2 treated sperm. Female offspring from H2O2 treated sperm were smaller, became glucose intolerant and accumulated increased levels of adipose tissue compared to control female offspring. Interestingly male offspring phenotype was less severe with increases in fat depots only seen at 4 weeks of age, which was restored to that of control offspring later in life, demonstrating sex-specific impacts on offspring. This study implicates elevated sperm ROS concentrations, which are common to many paternal health pathologies, as a mediator of programming offspring for metabolic syndrome and obesity.