Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Front Pharmacol ; 15: 1354794, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846087

RESUMO

Introduction: Emerging proof suggests that Apocynum venetum flowers polysaccharide (AVFP) has immunomodulatory effects in vitro. However, the action mechanism of AVFA is still unclear in vivo. The purpose of this study is to probe into the potential mechanism of AVFA in immunosuppressed mice by investigating organ index, cytokine levels, anti-oxidative stress capacity, transcriptomics, and gut microbiota. Methods: Immunocompromised mice induced by cyclophosphamide (CTX) were divided into six groups. The enzyme-labeled method, hematoxylin and eosin, transcriptomics, and high-throughput sequencing were used to detect the regulatory effects of AVFP on immunocompromised mice and the function of AVFP on the concentration of short-chain fatty acids (SCFAs) by high-performance liquid chromatography (HPLC) analysis. The Spearman correlation analysis was used to analyze the correlation between the intestinal microbiota and biochemical indexes. Results: The experimental results illustrated that AVFP has protective effects against CTX-induced immunosuppression in mice by prominently increasing the organ index and levels of anti-inflammatory factors in serum in addition to enhancing the antioxidant capacity of the liver. Meanwhile, it could also signally decrease the level of pro-inflammatory cytokines in serum, the activity of transaminase in serum, and the content of free radicals in the liver, and alleviate the spleen tissue damage induced by CTX. Transcriptomics results discovered that AVFP could play a role in immune regulation by participating in the NF-κB signaling pathway and regulating the immune-related genes Bcl3, Hp, Lbp, Cebpd, Gstp2, and Lcn2. Gut microbiota results illustrated that AVFP could increase the abundance of beneficial bacteria, reduce the abundance of harmful bacteria, and regulate the metabolic function of intestinal microorganisms while dramatically improving the content of SCFAs, modulating immune responses, and improving the host metabolism. The Spearman analysis further evaluated the association between intestinal microbiota and immune-related indicators. Conclusion: These findings demonstrated that AVFP could enhance the immune effects of the immunosuppressed mice and improve the body's ability to resist oxidative stress.

2.
Tissue Cell ; 88: 102426, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38833941

RESUMO

Diabetes mellitus (DM) is a well-known hyperglycemic metabolic condition identified by oxidative stress and biological function disruption. Kiwifruit is a valuable source of polyphenols and vitamin C with great antioxidant, nutritional, and health-promoting effects. Therefore, this study was initiated to explore the antioxidant and anti-hyperglycemic effects of kiwifruit aqueous extract (KFE) against oxidative injury and testis dysfunction in rats with diabetes. Twenty-four male Wistar Albino rats (160-170 g) were divided into four groups: Group 1 served as the control, Group 2 supplemented orally with kiwifruit extract (KFE; 1 g/kg/day) for one month, Group 3 was treated with a single streptozotocin dose (STZ; 50 mg/kg ip), and Group 4 where the diabetic rats were administered with KFE, respectively. According to the results, the GC-MS analysis of KFE revealed several main components with strong antioxidant properties. In diabetic rats, lipid peroxidation and hyperglycemia were accompanied by perturbations in hormone levels and sperm characteristics. Antioxidant enzymes, glutathione content, aminotransferase, phosphatase activities, and protein content were decreased. Furthermore, histology, immunohistochemical PCNA expression, and histochemical analysis of collagen, DNA, RNA, and total protein. were altered in rat testis sections, supporting the changes in biochemistry. Furthermore, diabetic rats supplemented with KFE manifested considerable amendment in all the tested parameters besides improved tissue structure and gene expressions (NF-kB, p53, IL-1ß, Bax, IL-10, and Bcl2) relative to the diabetic group. In conclusion, KFE has beneficial effects as it can improve glucose levels and testis function, so it might be used as a complementary therapy in DM.


Assuntos
Actinidia , Apoptose , Diabetes Mellitus Experimental , Hiperglicemia , Inflamação , Estresse Oxidativo , Extratos Vegetais , Ratos Wistar , Testículo , Animais , Masculino , Actinidia/química , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Ratos , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testículo/patologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/metabolismo , Apoptose/efeitos dos fármacos , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Inflamação/tratamento farmacológico , Inflamação/patologia , Estreptozocina , Antioxidantes/farmacologia
3.
Heliyon ; 10(5): e26562, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38455549

RESUMO

Lately, liver diseases were categorized as one of the most prevalent health problems globally as it causes a severe threat to mankind all over the world due to the wide range of occurrence. There are multiple factors causing hepatic disorders, such as alcohol, virus, poisons, adverse effects of drugs, poor diet, inherited conditions and obesity. Liver diseases have various types including alcoholic liver disease, non-alcoholic fatty liver disease, autoimmune hepatitis, liver cancer, hepatocellular carcinoma, liver fibrosis and hepatic inflammation. Therefore, it is imperative to find effective and efficacious agents in managing liver diseases. Fusarium oxysporum, an endophytic fungus and containing many bioactive compounds, could be served as a forked medication for enormous number and types of maladies. It was characterized by producing biochemical compounds which had rare pharmacological properties as it may be found in a limit number of other medicinal plants. The majority of the past researches related to Fusarium oxysporum recited the fungal negative field either on the pathogenic effects of the fungus on economical crops or on the fungal chemical components to know how to resist it. The present review will highlight on the bright side of Fusarium oxysporum and introduce the functional activities of its chemical compounds for treating its target diseases. The key point of illustrated studies in this article is displaying wide range of detected bioactive compounds isolated from Fusarium oxysporum and in other illustrated studies it was elucidated the therapeutical and pharmacological potency of these biologically active compounds (isolated from medicinal plants sources) against different types of liver diseases including non-alcoholic fatty liver disease, alcoholic liver disease, cirrhosis and others. It was demonstrated that F. oxysporum contains unique types of isoflavones, flavonoids, phenols and another active chemical compounds, and these compounds showed recently a fabulous clinical contribution in the therapy of liver injury diseases, which opens new and unprecedented way for evaluating the maintaining efficacy of Fusarium oxysporum bioactive compounds in dealing with hepatic complications and its remedy impacting on liver diseases and injured hepatocytes through recommending implement a practical study.

4.
Int J Biol Macromol ; 264(Pt 1): 130508, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428780

RESUMO

In present study, two water-soluble polysaccharides designated as POL-1 and POL-2 were purified from purslane and their structural characteristics as well as immunomodulatory activity were investigated. The weight-average molecular weight (Mw) of POL-1 and POL-2 were determined to be 64,100 Da and 21,000 Da, respectively. Comprehensive techniques including UV, IR, GC-MS, and NMR were applied to deduced that POL-1 was a pectin polysaccharide homogalacturonan (HG) consisting of →4)-α-GalpA-(1→ with methyl ester degree of 9.71 % and acetylation degree of 0.34 %, while POL-2 was composed of a 1, 4-linked ß-Galp backbone substituted by short side chain →4)-α-Glcp-(1→ and →6)-α-Glcp-(1→. The →4)-α-Glcp-(1→ was attached at the O-6 position of →4)-ß-Galp-(1→. TEM further revealed that POL-1 was non-branched single chains, while POL-2 was entangled microstructure with side chains. Moreover, POL-2 significantly promoted macrophage phagocytosis as well as the secretion of NO and cytokines (TNF-α, IL-6) through activating NF-κB signaling pathway, thus demonstrating potential immunomodulatory activity. These findings suggested that purslane may be exploited as a potential adjuvant and dietary supplement with immunostimulatory purpose.


Assuntos
Portulaca , Portulaca/química , Polissacarídeos/química , Citocinas/metabolismo , Macrófagos/metabolismo , Fagocitose
5.
J Nat Prod ; 87(2): 304-314, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38320172

RESUMO

Pleosmaranes A-R (1-18), 18 new isopimarane-type diterpenoids, together with four known analogs (19-22), were isolated from the mangrove endophytic fungus Pleosporales sp. HNQQJ-1. Their structures and absolute configurations were established by analysis of their spectroscopic data and electronic circular dichroism (ECD) calculations. Compounds 1-9 possess an unusual aromatic B ring and a 20-nor-isopimarane skeleton. Compounds 15-17 contain a unique 2-oxabicyclo[2.2.2]octane moiety. Compound 18 features an unexpected 2-oxabicyclo[3.2.1]octane moiety. Compounds 8 and 12 exhibited a moderate inhibitory effect against LPS-induced NO production, with IC50 values of 19 and 25 µM, respectively.


Assuntos
Ascomicetos , Diterpenos , Abietanos/farmacologia , Octanos , Ascomicetos/química , Diterpenos/farmacologia , Estrutura Molecular
6.
Int J Biol Macromol ; 260(Pt 2): 129187, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38262551

RESUMO

A new polysaccharide (IHP-1aa) was isolated from the fruiting body of Inonotus hispidus by hot water extraction, ethanol precipitation and column chromatography. The molecular weight of IHP-1aa was 26.9 kDa. Structural analysis showed that IHP-1aa consisted of glucose (Glc), galactose (Gal), fucose (Fuc), mannose (Man) and contained a certain amount of 3-O-methylgalactose (3-O-Me-Gal). The structure was mainly composed of →6)-α/ß-D-Glcp-(1→, →6)-α-D-Galp-(1→, →6)-(3-O-Me)-α-D-Galp-(1→, →6)-α-D-Manp-(1 â†’ and →2, 6)-α-D-Galp-(1 â†’ as the main chain. Branched at O-2 with single ß-L-Fucp-(1 â†’ 6)-α-D-Galp-(1 â†’ 6)-α-D-Glcp-(1 â†’ as major the side chain. The results of SEM, XRD and AFM combined with Congo red indicated that IHP-1aa may be amorphous granular chain conformation. In addition, IHP-1aa stimulated macrophage function and improved phagocytic ability of RAW264.7, as well as promoted the secretion of NO, TNF-α and IL-6. IHP-1aa, a 3-O-methylgalactose-containing heteropolysaccharide, was isolated for the first time from the I. hispidus, which may be used as a potential immunomodulator in functional foods.


Assuntos
Inonotus , Metilgalactosídeos , Polissacarídeos , Humanos , Polissacarídeos/química , Galactose/química , Glucose/química
8.
Crit Rev Food Sci Nutr ; : 1-19, 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37837407

RESUMO

The numerous health benefits of dietary fibers (DFs) justify their inclusion in human diets and biomedical products. Given the short- and long-term human impacts of the COVID-19 virus on human health, the potential of DFs in building immunity against gastrointestinal and respiratory disorders is currently receiving high attention. This paper reviews the physicochemical properties of DFs, together with their immune functions and effects on the gastrointestinal tract and respiratory system mainly based on research in the last ten years. Possible modes of action of DFs in promoting health, especially building immunity, are explored. We seek to highlight the importance of understanding the exact physical and chemical characteristics and molecular behaviors of DFs in providing specific immune function. This review provides a perspective beyond the existing recognition of DFs' positive effects on human health, and offers a theoretical framework for the development of special DFs components and their application in functional foods and other therapeutic products against gastrointestinal and respiratory disorders. DFs enhance immunity from gastrointestinal and respiratory diseases to promote host health.

9.
Fitoterapia ; 171: 105692, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37757921

RESUMO

Two new 12- or 13- membered-ring macrocyclic alkaloids ascomylactam D and E (1 & 2), and a pair of new enantiomer (+)- and (-)- didymetone (3) were purified from the mangrove endophytic fungus Didymella sp. CYSK-4. Their structures and absolute configurations were determined by extensive spectroscopic analysis, single-crystal X-ray diffraction, ECD and 13C NMR calculations. Compound 2 exhibited significant cytotoxicity against human A549 and KYSE 150 cancer cell lines with IC50 values of 2.8 µM and 5.9 µM, respectively.


Assuntos
Antineoplásicos , Ascomicetos , Humanos , Estrutura Molecular , Ascomicetos/química , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética
11.
Heliyon ; 9(6): e16518, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37292326

RESUMO

Iridoid is a special class of monoterpenoids, whose basic skeleton is the acetal derivative of antinodilaldehyde with a bicyclic H-5/H-9ß, ß-cisfused cyclopentan pyran ring. They were often existed in Valerianaceae, Rubiaceae, Scrophulariaceae and Labiaceae family, and has various biological activities, such as anti-inflammatory, hypoglycemic, neuroprotection, and soon. In this review, iridoids from Patrinia (Valerianaceae family), and the active ones as well as their mechanisms in recent 20 years were summarized. Up to now, a total of 115 iridoids had been identified in Patrinia, among which 48 had extensive biological activities mainly presented in anti-inflammatory, anti-tumor and neuroprotective. And the mechanisms involved in MAPK, NF-κB and JNK signal pathways. The summary for iridoids and their activities will provide the evidence to exploit the iridoids in Patrinia.

12.
Oxid Med Cell Longev ; 2023: 9069645, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36733419

RESUMO

Patrinia scabiosaefolia, as traditional food and medicine plant, was used to treat appendicitis, enteritis, and hepatitis for thousand years in China. Patrinoside and patrinoside A isolated from P. scabiosaefolia could significantly improve insulin resistance (IR) by activating PI-3 K/AKT signaling pathway in our previous study. Since IR is closely related to inflammation, their anti-inflammatory activities in RAW264.7 inflammatory model induced by LPS and in 3 T3-L1 IR inflammatory model induced by TNF-α were evaluated to identify whether the effects on improving IR related to anti-inflammatory activity. In RAW264.7 cells, patrinoside and patrinoside A significantly inhibited the transcription and secretion of inflammatory mediators NO, TNF-α, and IL-6. Western blot analysis showed that the significant inhibition of phosphorylation of IκB and P65 and P38, ERK and JNK suggested that the effects were exerted through NF-κB pathway and MAPK pathway. In 3 T3-L1 cells, patrinoside and patrinoside A also inhibited the activation of NF-κB and MAPK pathways through inhibiting the transcriptions of inflammatory cytokines IL-6 and chemokines MCP-1 and MIP-1α. These events resulted in the inhibition of macrophages migration to adipocytes. In addition, patrinoside and patrinoside A ameliorated oxidative stress by inhibiting ROS release in LPS-stimulated RAW264.7 cells. In conclusion, patrinoside and patrinoside A could active PI-3 K/AKT pathway, inhibit NF-κB pathway, MAPK pathway, and improve oxidative stress, which showed multipathways on improving IR. These results provided the scientific basis for material basis and mechanism on improving IR of P. scabiosaefolia.


Assuntos
Resistência à Insulina , Patrinia , Animais , Camundongos , NF-kappa B/metabolismo , Patrinia/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , Células RAW 264.7 , Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Estresse Oxidativo
13.
Fitoterapia ; 165: 105423, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36608711

RESUMO

Growing in regions of Asia and North America, Patrinia scabiosaefolia is a wild vegetable and herb that has demonstrated health-promoting properties. Iridoids are one of the most bioactive phytochemicals in P. scabiosaefolia but the in-depth study is scarce. Herein we reported the separation and characterization of nine iridoids (compounds 1-9) from P. scabiosaefolia, and two compounds (2 and 6) were new. All the structures of the nine iridoids were characterized and confirmed with NMR (1D & 2D), HRMS, IR and UV. Compound 2 is a five-member ring iridoid, reminiscent of a broken C-1 and C-2 bond. Compound 6 has a typical monoene valerian iridoid, but the 5-deoxyglucose moiety at C-11 position is uncommon in this genus. The anti-diabetic evaluation of the isolated compounds revealed that compounds 1, 2, and 9 significantly increased the glucose absorption in 3 T3-L1 cells (P < 0.01). Further mechanism investigations have demonstrated that compound 1 promoted glucose uptake in dexamethasone-treated 3 T3-L1 adipocytes by activating PI3K/Akt signaling pathway. The expression of GLUT4 mRNA and protein was also upregulated. These results provide scientific references for the potential use of P. scabiosaefolia as a functional food to manage hyperglycemia.


Assuntos
Iridoides , Patrinia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Patrinia/química , Patrinia/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Hipoglicemiantes/farmacologia , Estrutura Molecular , Transdução de Sinais
14.
Food Chem ; 407: 135164, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36508868

RESUMO

In this paper, the physicochemical properties, antioxidant and anti-aging abilities of three new Tremella hydrocolloids were studied. The physicochemical properties were characterized by Fourier transform infrared spectroscopy, differential scanning calorimeter, X-ray diffractometry etc. The antioxidant activities of Tremella hydrocolloids were determined by ABTS radical, DPPH radical scavenging activity. The anti-aging ability of Tremella hydrocolloids was also investigated by using the organism model of Caenorhabditis elegans (C. elegans). The results showed that the ES-THD displayed the highest radical scavenging capacity and the best anti-aging abilities. The ability of ES-THD to scavenge ABTS radicals reached 100 % at 2 mg/mL, the ability of ES-THD to scavenge DPPH radicals reached 45.55 %. Compared with the control group, the average lifespan was 29.17 % longer fed with ES-THD. These results provide the evidence basis for the use of Tremella hydrocolloids as food texture modifiers, antioxidants, and anti-aging agents in the food industries.


Assuntos
Antioxidantes , Basidiomycota , Animais , Antioxidantes/farmacologia , Antioxidantes/química , Caenorhabditis elegans , Benzotiazóis , Ácidos Sulfônicos
15.
Food Chem Toxicol ; 172: 113583, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36577462

RESUMO

P-coumaric acid, phloridzin, quercetin-3-O-α-rhamnoside and 4-O-ß-glucopyranosyl-cis-coumaric acid isolated in Malus micromalus Makino fruit were investigated the inhibitory activity of cytochrome CYP450 enzyme by the probe test method of rat liver microsomes in vitro, and determined the role in drug metabolism and/or toxicology. Enzymatic kinetics method was used to determine the inhibition type of these components and corresponding inhibition constants. The results demonstrated that all the 4 compounds had no significance to inhibit the activities of CYP2E1 and CYP2C11. P-coumaric acid, phloridzin and quercetin-3-O-α-rhamnoside had a weak inhibitory effect on CYP3A4, which belonged to the competitive inhibitory type with inhibitory constants of 10.56, 30.79 and 40.29 µmol L-1, respectively. 4-O-ß-glucopyranosyl-cis-coumaric acid had a moderate inhibitory effect on CYP3A4, which belonged to the anti-competitive inhibition type and the inhibition constant was 5.56 µmol L-1. The CYP1A2 could be weakly inhibited by p-coumaric acid in the competitive type, and the inhibition constant is 25.20 µmol L-1 4-O-ß-glucopyranosyl-cis-coumaric acid exhibited anti-competitive inhibition of CYP1A2 with an inhibition constant of 19.91 µmol L-1, and the inhibition effect was weak. The results will be useful to optimize the clinical dosage regimen and avoid drug-drug interactions when it is utilized comminating with other medicines in the clinic.


Assuntos
Citocromo P-450 CYP1A2 , Microssomos Hepáticos , Animais , Ratos , Ácidos Cumáricos/farmacologia , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Microssomos Hepáticos/metabolismo , Florizina/farmacologia
16.
Biomed Res Int ; 2022: 6087751, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212709

RESUMO

Tumor immunotherapy is considered as one of the most promising methods in cancer treatment in recent years. Immune checkpoint blockade (ICB) can activate immune cells to destroy tumors by relieving the inhibitory pathway of tumor cells to immune cells. In silico prediction of the ICB response is an important step toward achieving effective and personalized cancer immunotherapy. Although immune checkpoint inhibitors have shown exciting clinical effects in the treatment of many types of tumors, there are still some clinical problems in practical application, such as low response rate and large individualized differences. How to predict the efficacy of effective individualized immune checkpoint inhibitors for tumor patients based on specific biomarkers and computational models is one of the key issues in the immunotherapy of this kind of tumor. In our work, from the five levels of genome level, transcription level, epigenetic level, microbial taxonomy level, and the immune cell infiltration profile level, the biomarkers and in silico calculation methods that affect the efficacy of tumor immune checkpoint inhibitors are comprehensively summarized.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Biomarcadores , Biomarcadores Tumorais , Biologia Computacional , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Microambiente Tumoral
17.
Front Nutr ; 9: 995550, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36082026

RESUMO

Insulin resistance (IR) is a physiological abnormality that occurs when insulin fails to activate the signal transduction pathway in target organs. It was found that supplementation of Nigella sativa seeds with oral antidiabetic medicines helps improve blood glucose control by enhanced ß cells activity and alleviation of IR. However, the activities and related mechanisms of phytochemicals from N. sativa seeds have not been thoroughly explored. In this study, the effects of two triterpenoids, 3-O-[ß-D-xylopyranose-(1→3)-α-L-rhamnose-(1→2)-α-L-arabinose]-28-O-[α-L-rhamnose-(1→4)-ß-D-glucopyranose-L-(1→6)-ß-D-glucopyranose]-hederagenin (Hxrarg) and 3-O-[ß-D-xylopyranose-(1→3)-α-L-rhamnose-(1→2)-α-L-arabinose]-hederagenin (Hxra), on IR were studied by 3T3-L1 adipocytes model. The results demonstrated that Hxrarg and Hxra inhibited maturation of 3T3-L1 preadipocytes, dramatically stimulated glucose uptake of IR-3T3-L1 adipocytes, promoted transcription of IRS, AKT, PI-3K, and GLUT4 mRNA. Western Blot results suggested that Hxrarg and Hxra were able to markedly up-regulate expression of p-IRS, p-AKT, PI-3K, and GLUT4 proteins. These findings could provide a basic foundation for the continued development and application of N. sativa in medicine and functional foods.

18.
Front Nutr ; 9: 899797, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711536

RESUMO

Nigella sativa is a valuable herb for its functional compositions in both food and medication. N. sativa seeds can enhance immunity, anti-inflammation and analgesia and hypoglycemia, but most of the related researches are related to volatile oil and extracts, and the activity and mechanism of compounds is not clear. In this study, Ethyl-α-D-galactopyranoside (EG), Methyl-α-D-glucoside (MG), 3-O-[ß-D-xylopyranose-(1 → 3)-α-L-rhamnose-(1 → 2)-α-L-arabinose]-28-O-[α-L-rhamnose-(1 → 4)-ß-D-glucopyranose-L-(1 → 6)-ß-D-glucopyranose]-hederagenin (HXRARG) and 3-O-[ß-D-xylopyranose-(1 → 3)-α-L-rhamnose-(1 → 2)-α-L-arabinose]-hederagenin (HXRA) were isolated and identified from N. sativa seeds. In addition, four compounds could activate NF-κB pathway by promoting the expression of phosphorylation of P65 and IκBα, promoting the phosphorylation of JNK, Erk and P38 to activate MAPK signaling pathway, enhancing the proliferation and phagocytic activity of RAW264.7 cells, and promoting the release of NO, TNF-α and IL-6 on RAW264.7 cell in vitro. The results showed that N. sativa can be used as dietary supplement to enhance immune.

19.
Front Microbiol ; 13: 900227, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35620105

RESUMO

In total, five new polyketide derivatives: eschscholin B (2), dalditone A and B (3 and 4), (1R, 4R)-5-methoxy-1,2,3,4-tetrahydronaphthalene-1,4-dio (5), and daldilene A (6), together with 10 known as analogs (1, 7-15) were isolated from the mangrove endophytic fungus Daldinia eschscholtzii KBJYZ-1. Their structures and absolute configurations were established by extensive analysis of NMR and HRESIMS spectra data combined with ECD calculations and the reported literature. Compounds 2 and 6 showed significant cell-based anti-inflammatory activities with IC50 values of 19.3 and 12.9 µM, respectively. In addition, western blot results suggested that compound 2 effectively inhibits the expression of iNOS and COX-2 in LPS-induced RAW264.7 cells. Further molecular biology work revealed the potential mechanism of 2 exerts anti-inflammatory function by inactivating the MAPK and NF-κB signaling pathways.

20.
Artigo em Inglês | MEDLINE | ID: mdl-35529919

RESUMO

The present study evaluated the antioxidant capacity and antidiabetic effect of Actinidia deliciosa in diabetic rats. Rats were grouped as follows: control, Actinidia deliciosa aqueous extract (ADAE, 1 g/kg, daily and orally), streptozotocin (STZ, 50 mg/kg BW, single intraperitoneal dose), and STZ plus ADAE, respectively. Twenty-eight components were detected by GC-MS analysis with high phenolic contents and high DPPH scavenging activity. In vivo results revealed that rats treated with STZ showed a highly significant elevation in blood glucose and a decrease in insulin hormone levels. Thiobarbituric acid-reactive substances and hydrogen peroxide levels were elevated, while bodyweight, enzymatic, and nonenzymatic antioxidants were significantly decreased. Furthermore, histopathological and immunohistochemical insulin expression, besides ultrastructure microscopic variations (ß-cells, α-cells, and δ-cells), were seen in pancreas sections supporting the obtained biochemical changes. Otherwise, rats supplemented with ADAE alone showed an improved antioxidant status and declined lipid peroxidation. Moreover, diabetic rats augmented with ADAE showed significant modulation in oxidative stress markers and different pancreatic tissue investigations compared to diabetic ones. Conclusively, ADAE has a potent antioxidant and hypoglycemic influence that may be utilized as a health-promoting complementary therapy in diabetes mellitus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA