Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 8(21)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37788099

RESUMO

Glioblastoma (GBM) is the most lethal brain cancer with a dismal prognosis. Stem-like GBM cells (GSCs) are a major driver of GBM propagation and recurrence; thus, understanding the molecular mechanisms that promote GSCs may lead to effective therapeutic approaches. Through in vitro clonogenic growth-based assays, we determined mitogenic activities of the ligand molecules that are implicated in neural development. We have identified that semaphorin 3A (Sema3A), originally known as an axon guidance molecule in the CNS, promotes clonogenic growth of GBM cells but not normal neural progenitor cells (NPCs). Mechanistically, Sema3A binds to its receptor neuropilin-1 (NRP1) and facilitates an interaction between NRP1 and TGF-ß receptor 1 (TGF-ßR1), which in turn leads to activation of canonical TGF-ß signaling in both GSCs and NPCs. TGF-ß signaling enhances self-renewal and survival of GBM tumors through induction of key stem cell factors, but it evokes cytostatic responses in NPCs. Blockage of the Sema3A/NRP1 axis via shRNA-mediated knockdown of Sema3A or NRP1 impeded clonogenic growth and TGF-ß pathway activity in GSCs and inhibited tumor growth in vivo. Taken together, these findings suggest that the Sema3A/NRP1/TGF-ßR1 signaling axis is a critical regulator of GSC propagation and a potential therapeutic target for GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Semaforina-3A/metabolismo , Semaforina-3A/farmacologia , Glioblastoma/patologia , Neuropilina-1/genética , Neoplasias Encefálicas/patologia , Fator de Crescimento Transformador beta
2.
Neoplasia ; 39: 100894, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36972629

RESUMO

Recent studies indicate that signaling molecules traditionally associated with central nervous system function play critical roles in cancer. Dopamine receptor signaling is implicated in various cancers including glioblastoma (GBM) and it is a recognized therapeutic target, as evidenced by recent clinical trials with a selective dopamine receptor D2 (DRD2) inhibitor ONC201. Understanding the molecular mechanism(s) of the dopamine receptor signaling will be critical for development of potent therapeutic options. Using the human GBM patient-derived tumors treated with dopamine receptor agonists and antagonists, we identified the proteins that interact with DRD2. DRD2 signaling promotes glioblastoma (GBM) stem-like cells and GBM growth by activating MET. In contrast, pharmacological inhibition of DRD2 induces DRD2-TRAIL receptor interaction and subsequent cell death. Thus, our findings demonstrate a molecular circuitry of oncogenic DRD2 signaling in which MET and TRAIL receptors, critical factors for tumor cell survival and cell death, respectively, govern GBM survival and death. Finally, tumor-derived dopamine and expression of dopamine biosynthesis enzymes in a subset of GBM may guide patient stratification for DRD2 targeting therapy.


Assuntos
Glioblastoma , Humanos , Linhagem Celular Tumoral , Dopamina , Glioblastoma/patologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF , Transdução de Sinais , Receptores de Dopamina D2/metabolismo
3.
J Breast Cancer ; 26(1): 1-13, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36762784

RESUMO

Despite the advances in research and treatment of human breast cancer, its incidence rate continues to increase by 0.5% per year, and the discovery of novel therapeutic strategies for specific subtypes of human breast cancer remains challenging. Traditional laboratory mouse models have contributed tremendously to human breast cancer research. However, mice do not develop tumors spontaneously; consequently, genetically engineered mouse models or patient-derived xenograft models are often relied upon for more sophisticated human breast cancer studies. Since human breast cancer develops spontaneously, there is a need for alternative, yet complementary, models that can better recapitulate the features of human breast cancer to better understand the molecular and clinical complexities of the disease in developing new therapeutic strategies. Canine mammary tumors are one such alternative model that share features with human breast cancer, including prevalence rate, subtype classification, treatment, and mutational profiles, all of which are described in this review.

4.
Br J Cancer ; 128(4): 626-637, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36522480

RESUMO

BACKGROUND: Malignant phyllodes tumour (MPT) is a rare breast malignancy with epithelial and mesenchymal features. Currently, there are no appropriate research models or effective targeted therapeutic approaches for MPT. METHODS: We collected fresh frozen tissues from nine patients with MPT and performed whole-exome and RNA sequencing. Additionally, we established patient-derived xenograft (PDX) models from patients with MPT and tested the efficacy of targeting dysregulated pathways in MPT using the PDX model from one MPT. RESULTS: MPT has unique molecular characteristics when compared to breast cancers of epithelial origin and can be classified into two groups. The PDX model derived from one patient with MPT showed that the mouse epithelial component increased during tumour growth. Moreover, targeted inhibition of platelet-derived growth factor receptor (PDGFR) and phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) by imatinib mesylate and PKI-587 showed in vivo tumour suppression effects. CONCLUSIONS: This study revealed the molecular profiles of MPT that can lead to molecular classification and potential targeted therapy, and suggested that the MPT PDX model can be a useful tool for studying the pathogenesis of fibroepithelial neoplasms and for preclinical drug screening to find new therapeutic strategies for MPT.


Assuntos
Neoplasias da Mama , Neoplasias Fibroepiteliais , Tumor Filoide , Humanos , Animais , Camundongos , Feminino , Fosfatidilinositol 3-Quinases , Linhagem Celular Tumoral , Mesilato de Imatinib , Neoplasias da Mama/patologia , Tumor Filoide/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Mamíferos
5.
J Mol Med (Berl) ; 99(12): 1783-1795, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34626199

RESUMO

We investigated the molecular mechanisms of paclitaxel resistance in TNBC using seven patient-derived xenograft (PDX) models and TNBC cell lines. Among the seven PDX models, four models showed resistance to paclitaxel. Dysregulation of JAK/STAT pathways and JAK2 copy number gains were observed in the four paclitaxel-resistant PDX tumors. In TNBC cell lines, silencing the JAK2 gene showed a significant but mild synergistic effect when combined with paclitaxel in vitro. However, JAK1/2 inhibitor treatment resulted in restoration of paclitaxel sensitivity in two out of four paclitaxel-resistant PDX models and JAK1/2 inhibitor alone significantly suppressed the tumor growth in one out of the two remaining PDX models. Transcriptome data derived from the murine microenvironmental cells revealed an enrichment of genes involved in the cell cycle processes among the four paclitaxel-resistant PDX tumors. Histologic examination of those PDX tumor tissues showed increased Ki67-positive fibroblasts in the tumor microenvironment. Among the four different cancer-associated fibroblast (CAF) subtypes, cycling CAF exhibiting features of active cell cycle was enriched in the paclitaxel-resistant PDX tumors. Additionally, fibroblasts treated with the conditioned media from the JAK2-silenced breast cancer cells showed downregulation of cell cycle-related genes. Our data suggest that the JAK2 gene may play a critical role in determining responses of TNBC to paclitaxel by modulating the intrinsic susceptibility of cancer cells against paclitaxel and also by eliciting functional transitions of CAF subtypes in the tumor microenvironment. KEY MESSAGES : We investigated the molecular mechanisms of paclitaxel resistance in TNBC. JAK2 signaling was associated with paclitaxel resistance in TNBC PDX models. Paclitaxel-resistant PDX tumors were enriched with microenvironment cCAF subpopulation. JAK2 regulated paclitaxel-resistant CAF phenotype transition.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Janus Quinase 2/genética , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/genética , Paclitaxel/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Animais , Antineoplásicos Fitogênicos/farmacologia , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/metabolismo , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Nitrilas/farmacologia , Paclitaxel/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Neoplasias de Mama Triplo Negativas/metabolismo , Microambiente Tumoral/efeitos dos fármacos
6.
Nat Commun ; 12(1): 4840, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376661

RESUMO

Gastric cancer (GC) is commonly treated by chemotherapy using 5-fluorouracil (5-FU) derivatives and platinum combination, but predictive biomarker remains lacking. We develop patient-derived xenografts (PDXs) from 31 GC patients and treat with a combination of 5-FU and oxaliplatin, to determine biomarkers associated with responsiveness. When the PDXs are defined as either responders or non-responders according to tumor volume change after treatment, the responsiveness of PDXs is significantly consistent with the respective clinical outcomes of the patients. An integrative genomic and transcriptomic analysis of PDXs reveals that pathways associated with cell-to-cell and cell-to-extracellular matrix interactions enriched among the non-responders in both cancer cells and the tumor microenvironment (TME). We develop a 30-gene prediction model to determine the responsiveness to 5-FU and oxaliplatin-based chemotherapy and confirm the significant poor survival outcomes among cases classified as non-responder-like in three independent GC cohorts. Our study may inform clinical decision-making when designing treatment strategies.


Assuntos
Adenocarcinoma/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais/genética , Neoplasias Gástricas/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Adenocarcinoma/genética , Animais , Feminino , Fluoruracila/administração & dosagem , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Oxaliplatina/administração & dosagem , Neoplasias Gástricas/genética , Análise de Sobrevida , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/genética
7.
BMC Cancer ; 21(1): 923, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34399705

RESUMO

BACKGROUND: Gastric cancer (GC) is one of the leading causes of cancer-related deaths worldwide. Human epidermal growth factor receptor 2 (HER2) amplification occurs in approximately 13-23% of all GC cases and patients with HER2 overexpression exhibit a poor prognosis. Lapatinib, a dual EGFR/HER2 tyrosine kinase inhibitor, is an effective agent to treat HER2-amplified breast cancer but it failed in gastric cancer (GC) clinical trials. However, the molecular mechanism of lapatinib resistance in HER2-amplified GC is not well studied. METHODS: We employed an unbiased, genome-scale screening with pooled CRISPR library on HER2-amplified GC cell lines to identify genes that are associated with resistance to lapatinib. To validate the candidate genes, we applied in vitro and in vivo pharmacological tests to confirm the function of the target genes. RESULTS: We found that loss of function of CSK or PTEN conferred lapatinib resistance in HER2-amplified GC cell lines NCI-N87 and OE19, respectively. Moreover, PI3K and MAPK signaling was significantly increased in CSK or PTEN null cells. Furthermore, in vitro and in vivo pharmacological study has shown that lapatinib resistance by the loss of function of CSK or PTEN, could be overcome by lapatinib combined with the PI3K inhibitor copanlisib and MEK inhibitor trametinib. CONCLUSIONS: Our study suggests that loss-of-function mutations of CSK and PTEN cause lapatinib resistance by re-activating MAPK and PI3K pathways, and further proved these two pathways are druggable targets. Inhibiting the two pathways synergistically are effective to overcome lapatinib resistance in HER2-amplified GC. This study provides insights for understanding the resistant mechanism of HER2 targeted therapy and novel strategies that may ultimately overcome resistance or limited efficacy of lapatinib treatment for subset of HER2 amplified GC.


Assuntos
Biomarcadores Tumorais/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Receptor ErbB-2/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Feminino , Perfilação da Expressão Gênica , Humanos , Lapatinib/administração & dosagem , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Piridonas/administração & dosagem , Pirimidinas/administração & dosagem , Pirimidinonas/administração & dosagem , Quinazolinas/administração & dosagem , Receptor ErbB-2/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Biol Proced Online ; 23(1): 1, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33390162

RESUMO

BACKGROUND: Gastric cancer metastasis is a highly fatal disease with a five-year survival rate of less than 5%. One major obstacle in studying gastric cancer metastasis is the lack of faithful models available. The cancer xenograft mouse models are widely used to elucidate the mechanisms of cancer development and progression. Current procedures for creating cancer xenografts include both heterotopic (i.e., subcutaneous) and orthotopic transplantation methods. Compared to the heterotopic model, the orthotopic model has been shown to be the more clinically relevant design as it enables the development of cancer metastasis. Although there are several methods in use to develop the orthotopic gastric cancer model, there is not a model which uses various types of tumor materials, such as soft tissues, semi-liquid tissues, or culture derivatives, due to the technical challenges. Thus, developing the applicable orthotopic model which can utilize various tumor materials is essential. RESULTS: To overcome the known limitations of the current orthotopic gastric cancer models, such as exposure of tumor fragments to the neighboring organs or only using firm tissues for the orthotopic implantation, we have developed a new method allowing for the complete insertion of soft tissue fragments or homogeneously minced tissues into the stomach submucosa layer of the immunodeficient NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mouse. With this completely-closed transplantation method, tumors with various types of tissue may be used to establish orthotopic gastric cancer models without the risks of exposure to nearby organs or cell leakage. This surgical procedure was highly reproducible in generating forty-eight mouse models with a surgery success rate of 96% and tumor formation of 93%. Among four orthotopic patient-derived xenograft (PDX) models that we generated in this study, we verified that the occurrence of organotropic metastasis in either the liver or peritoneal cavity was the same as that of the donor patients. CONCLUSION: Here we describe a new protocol, step by step, for the establishment of orthotopic xenograft of gastric cancer. This novel technique will be able to increase the use of orthotopic models in broader applications for not only gastric cancer research but also any research related to the stomach microenvironment.

10.
Hum Genomics ; 14(1): 20, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32498696

RESUMO

Coronavirus disease 2019 (COVID-19) is a declared pandemic that is spreading all over the world at a dreadfully fast rate. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the pathogen of COVID-19, infects the human body using angiotensin-converting enzyme 2 (ACE2) as a receptor identical to the severe acute respiratory syndrome (SARS) pandemic that occurred in 2002-2003. SARS-CoV-2 has a higher binding affinity to human ACE2 than to that of other species. Animal models that mimic the human disease are highly essential to develop therapeutics and vaccines against COVID-19. Here, we review transgenic mice that express human ACE2 in the airway and other epithelia and have shown to develop a rapidly lethal infection after intranasal inoculation with SARS-CoV, the pathogen of SARS. This literature review aims to present the importance of utilizing the human ACE2 transgenic mouse model to better understand the pathogenesis of COVID-19 and develop both therapeutics and vaccines.


Assuntos
Betacoronavirus/metabolismo , Infecções por Coronavirus/patologia , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/patologia , Enzima de Conversão de Angiotensina 2 , Animais , Betacoronavirus/patogenicidade , COVID-19 , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pandemias , Regiões Promotoras Genéticas/genética , Ligação Proteica/fisiologia , Receptores Virais/genética , Receptores Virais/metabolismo , SARS-CoV-2
11.
Clin Cancer Res ; 25(9): 2821-2834, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30670495

RESUMO

PURPOSE: Genomic and transcriptomic alterations during metastasis are considered to affect clinical outcome of colorectal cancers, but detailed clinical implications of metastatic alterations are not fully uncovered. We aimed to investigate the effect of metastatic evolution on in vivo treatment outcome, and identify genomic and transcriptomic alterations associated with drug responsiveness. EXPERIMENTAL DESIGN: We developed and analyzed patient-derived xenograft (PDX) models from 35 patients with colorectal cancer including 5 patients with multiple organ metastases (MOMs). We performed whole-exome, DNA methylation, and RNA sequencing for patient and PDX tumors. With samples from patients with MOMs, we conducted phylogenetic and subclonal analysis and in vivo drug efficacy test on the corresponding PDX models. RESULTS: Phylogenetic analysis using mutation, expression, and DNA methylation data in patients with MOMs showed that mutational alterations were closely connected with transcriptomic and epigenomic changes during the tumor evolution. Subclonal analysis revealed that initial primary tumors with larger number of subclones exhibited more dynamic changes in subclonal architecture according to metastasis, and loco-regional and distant metastases occurred in a parallel or independent fashion. The PDX models from MOMs demonstrated therapeutic heterogeneity for targeted treatment, due to subclonal acquisition of additional mutations or transcriptomic activation of bypass signaling pathway during tumor evolution. CONCLUSIONS: This study demonstrated in vivo therapeutic heterogeneity of colorectal cancers using PDX models, and suggests that acquired subclonal alterations in mutations or gene expression profiles during tumor metastatic processes can be associated with the development of drug resistance and therapeutic heterogeneity of colorectal cancers.


Assuntos
Antineoplásicos/farmacologia , Biomarcadores Tumorais/genética , Neoplasias Colorretais/patologia , Heterogeneidade Genética , Genoma Humano , Mutação , Transcriptoma , Animais , Apoptose , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Metástase Neoplásica , Filogenia , Prognóstico , Células Tumorais Cultivadas , Sequenciamento do Exoma , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Neuro Oncol ; 21(2): 222-233, 2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29939324

RESUMO

BACKGROUND: Cancer is a complex disease with profound genomic alterations and extensive heterogeneity. Recent studies on large-scale genomics have shed light on the impact of core oncogenic pathways, which are frequently dysregulated in a wide spectrum of cancer types. Aberrant activation of the hepatocyte growth factor (HGF) signaling axis has been associated with promoting various oncogenic programs during tumor initiation, progression, and treatment resistance. As a result, HGF-targeted therapy has emerged as an attractive therapeutic approach. However, recent clinical trials involving HGF-targeted therapies have demonstrated rather disappointing results. Thus, an alternative, in-depth assessment of new patient stratification is necessary to shift the current clinical course. METHODS: To address such challenges, we have evaluated the therapeutic efficacy of YYB-101, an HGF-neutralizing antibody, in a series of primary glioblastoma stem cells (GSCs) both in vitro and in vivo. Furthermore, we performed genome and transcriptome analysis to determine genetic and molecular traits that exhibit therapeutic susceptibility to HGF-mediated therapy. RESULTS: We have identified several differentially expressed genes, including MET, KDR, and SOX3, which are associated with tumor invasiveness, malignancy, and unfavorable prognosis in glioblastoma patients. We also demonstrated the HGF-MET signaling axis as a key molecular determinant in GSC invasion, and we discovered that a significant association in HGF expression existed between mesenchymal phenotype and immune cell recruitment. CONCLUSIONS: Upregulation of MET and mesenchymal cellular state are essential in generating HGF-mediated therapeutic responses. Our results provide an important framework for evaluating HGF-targeted therapy in future clinical settings.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genômica/métodos , Glioblastoma/tratamento farmacológico , Fator de Crescimento de Hepatócito/antagonistas & inibidores , Transcriptoma , Animais , Apoptose , Movimento Celular , Proliferação de Células , Feminino , Glioblastoma/genética , Glioblastoma/patologia , Fator de Crescimento de Hepatócito/imunologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fenótipo , Transdução de Sinais , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Blood ; 131(17): 1931-1941, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29475961

RESUMO

Epstein-Barr virus (EBV)-positive diffuse large B-cell lymphomas (EBV+-DLBLs) tend to occur in immunocompromised patients, such as the elderly or those undergoing solid organ transplantation. The pathogenesis and genomic characteristics of EBV+-DLBLs are largely unknown because of the limited availability of human samples and lack of experimental animal models. We observed the development of 25 human EBV+-DLBLs during the engraftment of gastric adenocarcinomas into immunodeficient mice. An integrated genomic analysis of the human-derived EBV+-DLBLs revealed enrichment of mutations in Rho pathway genes, including RHPN2, and Rho pathway transcriptomic activation. Targeting the Rho pathway using a Rho-associated protein kinase (ROCK) inhibitor, fasudil, markedly decreased tumor growth in EBV+-DLBL patient-derived xenograft (PDX) models. Thus, alterations in the Rho pathway appear to contribute to EBV-induced lymphomagenesis in immunosuppressed environments.


Assuntos
Adenocarcinoma/metabolismo , Transformação Celular Viral , Infecções por Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/metabolismo , Linfoma Difuso de Grandes Células B/metabolismo , Transdução de Sinais , Neoplasias Gástricas/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adenocarcinoma/virologia , Animais , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/patologia , Herpesvirus Humano 4/genética , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Linfoma Difuso de Grandes Células B/virologia , Camundongos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/virologia , Proteínas rho de Ligação ao GTP/genética
14.
Mol Cancer Ther ; 16(10): 2178-2190, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28611106

RESUMO

Colorectal cancer is the third most commonly diagnosed cancer in the world, and exhibits heterogeneous characteristics in terms of genomic alterations, expression signature, and drug responsiveness. Although there have been considerable efforts to classify this disease based on high-throughput sequencing techniques, targeted treatments for specific subgroups have been limited. KRAS and BRAF mutations are prevalent genetic alterations in colorectal cancers, and patients with mutations in either of these genes have a worse prognosis and are resistant to anti-EGFR treatments. In this study, we have found that a subgroup of colorectal cancers, defined by having either KRAS or BRAF (KRAS/BRAF) mutations and BCL2L1 (encoding BCL-XL) amplification, can be effectively targeted by simultaneous inhibition of BCL-XL (with ABT-263) and MCL1 (with YM-155). This combination treatment of ABT-263 and YM-155 was shown to have a synergistic effect in vitro as well as in in vivo patient-derived xenograft models. Our data suggest that combined inhibition of BCL-XL and MCL1 provides a promising treatment strategy for this genomically defined colorectal cancer subgroup. Mol Cancer Ther; 16(10); 2178-90. ©2017 AACR.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteína bcl-X/genética , Idoso , Compostos de Anilina/administração & dosagem , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Feminino , Humanos , Imidazóis/administração & dosagem , Camundongos , Mutação , Naftoquinonas/administração & dosagem , Sulfonamidas/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Mol Cells ; 39(2): 77-86, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26831452

RESUMO

Cancer is a heterogeneous disease caused by diverse genomic alterations in oncogenes and tumor suppressor genes. Despite recent advances in high-throughput sequencing technologies and development of targeted therapies, novel cancer drug development is limited due to the high attrition rate from clinical studies. Patient-derived xenografts (PDX), which are established by the transfer of patient tumors into immunodeficient mice, serve as a platform for co-clinical trials by enabling the integration of clinical data, genomic profiles, and drug responsiveness data to determine precisely targeted therapies. PDX models retain many of the key characteristics of patients' tumors including histology, genomic signature, cellular heterogeneity, and drug responsiveness. These models can also be applied to the development of biomarkers for drug responsiveness and personalized drug selection. This review summarizes our current knowledge of this field, including methodologic aspects, applications in drug development, challenges and limitations, and utilization for precision cancer medicine.


Assuntos
Sobrevivência de Enxerto , Terapia de Alvo Molecular/métodos , Neoplasias Gástricas/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Antineoplásicos/farmacologia , Biomarcadores Farmacológicos/metabolismo , Compostos de Bifenilo/farmacologia , Camptotecina/análogos & derivados , Camptotecina/farmacologia , Sinergismo Farmacológico , Humanos , Irinotecano , Camundongos , Camundongos Nus , Camundongos SCID , Nitrofenóis/farmacologia , Piperazinas/farmacologia , Medicina de Precisão , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Sulfonamidas/farmacologia , Carga Tumoral/efeitos dos fármacos
16.
Int J Oncol ; 48(3): 1053-62, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26783102

RESUMO

CCRT (concomitant chemotherapy and radiation therapy) is often used for glioblastoma multiforme (GBM) treatment after surgical therapy, however, patients treated with CCRT undergo poor prognosis due to development of treatment resistant recurrence. Many studies have been performed to overcome these problems and to discover genes influencing treatment resistance. To discover potential genes inducing CCRT resistance in GBM, we used whole genome screening by infecting shRNA pool in patient-derived cell. The cells infected ~8,000 shRNAs were implanted in mouse brain and treated RT/TMZ as in CCRT treated patients. We found DDX6 as the candidate gene for treatment resistance after screening and establishing DDX6 knock down cells for functional validation. Using these cells, we confirmed tumor associated ability of DDX6 in vitro and in vivo. Although proliferation improvement was not found, decreased DDX6 influenced upregulated clonogenic ability and resistant response against radiation treatment in vivo and in vitro. Taken together, we suggest that DDX6 discovered by using whole genome screening was responsible for radio- and chemoresistance in GBM.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/radioterapia , RNA Helicases DEAD-box/genética , Glioblastoma/tratamento farmacológico , Glioblastoma/radioterapia , Proteínas Proto-Oncogênicas/genética , Animais , Proliferação de Células , Sobrevivência Celular , Dacarbazina/análogos & derivados , Dacarbazina/química , Resistencia a Medicamentos Antineoplásicos , Biblioteca Gênica , Genoma , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Nus , Transplante de Neoplasias , RNA Interferente Pequeno/metabolismo , Temozolomida , Regulação para Cima
17.
Neuro Oncol ; 18(1): 37-47, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26032834

RESUMO

BACKGROUND: Clinical benefits from standard therapies against glioblastoma (GBM) are limited in part due to intrinsic radio- and chemoresistance of GBM and inefficient targeting of GBM stem-like cells (GSCs). Novel therapeutic approaches that overcome treatment resistance and diminish stem-like properties of GBM are needed. METHODS: We determined the expression levels of ubiquitination-specific proteases (USPs) by transcriptome analysis and found that USP1 is highly expressed in GBM. Using the patient GBM-derived primary tumor cells, we inhibited USP1 by shRNA-mediated knockdown or its specific inhibitor pimozide and evaluated the effects on stem cell marker expression, proliferation, and clonogenic growth of tumor cells. RESULTS: USP1 was highly expressed in gliomas relative to normal brain tissues and more preferentially in GSC enrichment marker (CD133 or CD15) positive cells. USP1 positively regulated the protein stability of the ID1 and CHEK1, critical regulators of DNA damage response and stem cell maintenance. Targeting USP1 by RNA interference or treatment with a chemical USP1 inhibitor attenuated clonogenic growth and survival of GSCs and enhanced radiosensitivity of GBM cells. Finally, USP1 inhibition alone or in combination with radiation significantly prolonged the survival of tumor-bearing mice. CONCLUSION: USP1-mediated protein stabilization promotes GSC maintenance and treatment resistance, thereby providing a rationale for USP1 inhibition as a potential therapeutic approach against GBM.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/efeitos da radiação , Proteases Específicas de Ubiquitina/metabolismo , Animais , Quinase 1 do Ponto de Checagem , Humanos , Proteína 1 Inibidora de Diferenciação/metabolismo , Camundongos , Proteínas Quinases/metabolismo , Células Tumorais Cultivadas , Proteases Específicas de Ubiquitina/antagonistas & inibidores
18.
Oncotarget ; 6(29): 27239-51, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26336988

RESUMO

Glioblastoma multiforme (GBM) possesses florid angiogenesis. However, the anti-angiogenic agent, Bevacizumab, did not improve overall survival of GBM patients. For more durable anti-angiogenic treatment, we interrogated resistant mechanisms of GBM against Bevacizumab. Serial orthotopic transplantation of in vivo Bevacizumab-treated GBM cells provoked complete refractoriness to the anti-angiogenic treatment. These tumors were also highly enriched with malignant phenotypes such as invasiveness, epithelial to mesenchymal transition, and stem-like features. Through transcriptome analysis, we identified that Talin1 (TLN1) significantly increased in the refractory GBMs. Inhibition of TLN1 not only attenuated malignant characteristics of GBM cells but also reversed the resistance to the Bevacizumab treatment. These data implicate TLN1 as a novel therapeutic target for GBM to overcome resistance to anti-angiogenic therapies.


Assuntos
Glioblastoma/metabolismo , Células-Tronco/citologia , Talina/antagonistas & inibidores , Talina/metabolismo , Inibidores da Angiogênese/química , Animais , Bevacizumab/química , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Transplante de Neoplasias , Células-Tronco Neoplásicas/citologia , Fenótipo , Resultado do Tratamento
19.
Biomed Res Int ; 2014: 747415, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25295271

RESUMO

Standard treatment for glioblastoma comprises surgical resection, chemotherapy with temozolomide, and radiotherapy. Nevertheless, majority of glioblastoma patients have recurrence from resistance to the cytotoxic conventional therapies. We examined combinational effects of KML001, an arsenic compound targeting telomeres of chromosomes with temozolomide or irradiation, in glioblastoma cell lines and xenograft models, to overcome the therapeutic limitation of chemoradiation therapy for glioblastoma. Although KML001 alone showed little effects on in vitro survival of glioblastoma cells, cell death by in vitro temozolomide treatment or irradiation was synergistically potentiated by combination with KML001. Since phosphorylated γ-H2AX, cleaved casepase-3, and cleaved PARP were dramatically increased by KML001, the synergistic effects would be mediated by increased DNA damage and subsequent tumor cell apoptosis. Combinatorial effects of KML001 were observed not only in chemo- and radiosensitive glioblastoma cell line, U87MG, but also in the resistant cell line, U251MG. In the U87MG glioblastoma xenograft models, KML001 did not have systemic toxicity but showed synergistic therapeutic effects in combination with temozolomide or irradiation to reduce tumor volumes significantly. These data indicated that KML001 could be a candidate sensitizer to potentiate therapeutic effects of conventional cytotoxic treatment for glioblastoma.


Assuntos
Arsenitos/administração & dosagem , Dacarbazina/análogos & derivados , Glioblastoma/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Compostos de Sódio/administração & dosagem , Telômero/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Dacarbazina/administração & dosagem , Sinergismo Farmacológico , Glioblastoma/genética , Glioblastoma/radioterapia , Humanos , Camundongos , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/radioterapia , Radiossensibilizantes/administração & dosagem , Telômero/genética , Temozolomida , Ensaios Antitumorais Modelo de Xenoenxerto
20.
J Vet Sci ; 15(2): 179-85, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24675832

RESUMO

The present study was conducted to investigate the effects of resveratrol on the insulin signaling pathway in the liver of obese mice. To accomplish this, we administered resveratrol to high fat diet-induced obese mice and examined the levels of protein phosphorylation in the liver using an antibody array. The phosphorylation levels of 10 proteins were decreased in the high fat diet and resveratrol (HFR) fed group relative to the levels in the high fat diet (HF) fed group. In contrast, the phosphorylation levels of more than 20 proteins were increased in the HFR group when compared with the levels of proteins in the HF group. Specifically, the phosphorylation levels of Akt (The308, Tyr326, Ser473) were restored to normal by resveratrol when compared with the levels in the HF group. In addition, the phosphorylation levels of IRS-1 (Ser636/Ser639), PI-3K p85-subunit α/γ (Tyr467/Tyr199), PDK1 (Ser241), GSK-3α (S21) and GSK-3 (Ser9), which are involved in the insulin signaling pathway, were decreased in the HF group, whereas the levels were restored to normal in the HFR group. Overall, the results show that resveratrol restores the phosphorylation levels of proteins involved in the insulin signaling pathway, which were decreased by a high fat diet.


Assuntos
Anti-Inflamatórios/farmacologia , Insulina/fisiologia , Fígado/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estilbenos/farmacologia , Animais , Imunofluorescência , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Fosforilação , Proteínas/metabolismo , Resveratrol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA