Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
ACS Appl Mater Interfaces ; 16(23): 29716-29727, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38814480

RESUMO

The emergence of XBB.1.16 has gained rapid global prominence. Previous studies have elucidated that the infection of SARS-CoV-2 induces alterations in the mitochondrial integrity of host cells, subsequently influencing the cellular response to infection. In this study, we compared the differences in infectivity and pathogenicity between XBB.1.16 and the parental Omicron sublineages BA.1 and BA.2 and assessed their impact on host mitochondria. Our findings suggest that, in comparison with BA.1 and BA.2, XBB.1.16 exhibits more efficient spike protein cleavage, more efficient mediating syncytia formation, mild mitochondriopathy, and less pathogenicity. Altogether, our investigations suggest that, based on the mutation of key sites, XBB.1.16 exhibited enhanced infectivity but lower pathogenicity. This will help us to further investigate the biological functions of key mutation sites.


Assuntos
COVID-19 , Mitocôndrias , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Humanos , COVID-19/virologia , Mitocôndrias/metabolismo , Animais , Mutação , Chlorocebus aethiops , Células Vero , Camundongos , Células HEK293
2.
J Immunother Cancer ; 11(12)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040417

RESUMO

BACKGROUND: Limited response to programmed death ligand-1 (PD-L1)/programmed death 1 (PD-1) immunotherapy is a major hindrance of checkpoint immunotherapy in non-small cell lung cancer (NSCLC). The abundance of PD-L1 on the tumor cell surface is crucial for the responsiveness of PD-1/PD-L1 immunotherapy. However, the negative control of PD-L1 expression and the physiological significance of the PD-L1 inhibition in NSCLC immunotherapy remain obscure. METHODS: Bioinformatics analysis was performed to profile and investigate the long non-coding RNAs that negatively correlated with PD-L1 expression and positively correlated with CD8+T cell infiltration in NSCLC. Immunofluorescence, in vitro PD-1 binding assay, T cell-induced apoptosis assays and in vivo syngeneic mouse models were used to investigate the functional roles of LINC02418 and mmu-4930573I07Rik in regulating anti-PD-L1 therapeutic efficacy in NSCLC. The molecular mechanism of LINC02418-enhanced PD-L1 downregulation was explored by immunoprecipitation, RNA immunoprecipitation (RIP), and ubiquitination assays. RIP, luciferase reporter, and messenger RNA degradation assays were used to investigate the m6A modification of LINC02418 or mmu-4930573I07Rik expression. Bioinformatics analysis and immunohistochemistry (IHC) verification were performed to determine the significance of LINC02418, PD-L1 expression and CD8+T cell infiltration. RESULTS: LINC02418 is a negative regulator of PD-L1 expression that positively correlated with CD8+T cell infiltration, predicting favorable clinical outcomes for patients with NSCLC. LINC02418 downregulates PD-L1 expression by enhancing PD-L1 ubiquitination mediated by E3 ligase Trim21. Both hsa-LINC02418 and mmu-4930573I07Rik (its homologous RNA in mice) regulate PD-L1 therapeutic efficacy in NSCLC via Trim21, inducing T cell-induced apoptosis in vitro and in vivo. Furthermore, METTL3 inhibition via N6-methyladenosine (m6A) modification mediated by YTHDF2 reader upregulates hsa-LINC02418 and mmu-4930573I07Rik. In patients with NSCLC, LINC02418 expression is inversely correlated with PD-L1 expression and positively correlated with CD8+T infiltration. CONCLUSION: LINC02418 functions as a negative regulator of PD-L1 expression in NSCLC cells by promoting the degradation of PD-L1 through the ubiquitin-proteasome pathway. The expression of LINC02418 is regulated by METTL3/YTHDF2-mediated m6A modification. This study illuminates the underlying mechanisms of PD-L1 negative regulation and presents a promising target for improving the effectiveness of anti-PD-L1 therapy in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Antígeno B7-H1/metabolismo , Receptor de Morte Celular Programada 1 , Imunoterapia , RNA/metabolismo , RNA/uso terapêutico , Ubiquitinação , Metiltransferases/genética , Metiltransferases/metabolismo , Metiltransferases/uso terapêutico
3.
Water Res ; 241: 120168, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37290194

RESUMO

Membrane aerated biofilm reactor (MABR) has attracted a lot of attention as an energy-efficient integrated nitrogen removing technology in recent years. However, it is lacking of understanding to realize stable partial nitrification in MABR because of its unique oxygen transfer mode and biofilm structure. In this study, free ammonia (FA) and free nitrous acid (FNA) based control strategies for partial nitrification with low NH4+-N concentration were proposed in a MABR of sequencing batch mode. The MABR was operated for over 500 days under different influent NH4+-N concentrations. With the influent NH4+-N of around 200 mg-N/L, partial nitrification could be established with relatively low concentration of FA (0.4-2.2 mg-N/L) which suppressed nitrite oxidizing bacteria (NOB) on the biofilm. With lower influent NH4+-N concentration of around 100 mg-N/L, the FA concentration was lower and strengthened suppression strategies based on FNA were needed. With the final pH of operating cycles below 5.0, the FNA produced in the sequencing batch MABR could stabilize partial nitrification by eliminating NOB on the biofilm. Since the activity of ammonia oxidizing bacteria (AOB) was lower without the blow-off of dissolved carbon dioxide in the bubbleless MABR, longer hydraulic retention time was required to reach a low pH for high concentration of FNA to suppress NOB. After exposures to FNA, the relative abundance of Nitrospira was decreased by 94.6%, while the abundance of Nitrosospira increased greatly which became another dominant AOB genus in addition to Nitrosomonas.


Assuntos
Amônia , Ácido Nitroso , Amônia/química , Nitrificação , Reatores Biológicos/microbiologia , Nitritos , Bactérias , Biofilmes , Oxirredução
4.
Int J Mol Sci ; 24(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37240315

RESUMO

Non-alcoholic fatty liver disease (NAFLD), characterized by excessive lipid accumulation in hepatocytes, is an increasing global healthcare burden. Sirtuin 2 (SIRT2) functions as a preventive molecule for NAFLD with incompletely clarified regulatory mechanisms. Metabolic changes and gut microbiota imbalance are critical to the pathogenesis of NAFLD. However, their association with SIRT2 in NAFLD progression is still unknown. Here, we report that SIRT2 knockout (KO) mice are susceptible to HFCS (high-fat/high-cholesterol/high-sucrose)-induced obesity and hepatic steatosis accompanied with an aggravated metabolic profile, which indicates SIRT2 deficiency promotes NAFLD-NASH (nonalcoholic steatohepatitis) progression. Under palmitic acid (PA), cholesterol (CHO), and high glucose (Glu) conditions, SIRT2 deficiency promotes lipid deposition and inflammation in cultured cells. Mechanically, SIRT2 deficiency induces serum metabolites alteration including upregulation of L-proline and downregulation of phosphatidylcholines (PC), lysophosphatidylcholine (LPC), and epinephrine. Furthermore, SIRT2 deficiency promotes gut microbiota dysbiosis. The microbiota composition clustered distinctly in SIRT2 KO mice with decreased Bacteroides and Eubacterium, and increased Acetatifactor. In clinical patients, SIRT2 is downregulated in the NALFD patients compared with healthy controls, and is associated with exacerbated progression of normal liver status to NAFLD to NASH in clinical patients. In conclusion, SIRT2 deficiency accelerates HFCS-induced NAFLD-NASH progression by inducing alteration of gut microbiota and changes of metabolites.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fígado/metabolismo , Sirtuína 2/genética , Sirtuína 2/metabolismo , Dieta , Lipídeos , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL
5.
Anal Chem ; 95(17): 6989-6995, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37083370

RESUMO

Among the various types of post-translational modifications (PTMs), methylation is the simple functionalized one that regulates the functions of proteins and affects interactions of protein-protein and protein-DNA/RNA, which will further influence diverse cellular processes. The methylation modification has only a slight effect on the size and hydrophobicity of proteins or peptides, and it cannot change their net charges at all, so the methods for recognizing methylated protein are still limited. Here, we designed a recognition receptor consisting of a α-hemolysin (α-HL) nanopore and polyamine decorated γ-cyclodextrin (am8γ-CD) to differentiate the methylation of peptide derived from a heterogeneous nuclear ribonucleoprotein at the single molecule level. The results indicate that the modification of a methyl group enhances the interaction between the peptide and the recognition receptor. The results of molecular simulations were consistent with the experiments; the methylated peptide interacts with the receptor strongly due to the more formation of hydrogen bonds. This proposed strategy also can be used to detect PTM in real biological samples and possesses the advantages of low-cost and high sensitivity and is label-free. Furthermore, the success in the construction of this recognition receptor will greatly facilitate the investigation of pathogenesis related to methylated arginine.


Assuntos
Arginina , Proteínas , Arginina/química , Metilação , Proteínas/metabolismo , RNA/metabolismo , Peptídeos/química , Processamento de Proteína Pós-Traducional
6.
Cancer Lett ; 560: 216118, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-36871813

RESUMO

Radiotherapy has shown measurable efficacy in breast cancer (BC). Elucidating the mechanisms and developing effective strategies against resistance, which is a major challenge, is crucial. Mitochondria, which regulate homeostasis of the redox environment, have emerged as a radiotherapeutic target. However, the mechanism via which mitochondria are controlled under radiation remains elusive. Here, we identified alpha-enolase (ENO1), as a prognostic marker for the efficacy of BC radiotherapy. ENO1 enhances radio-therapeutic resistance in BC via reducing the production of reactive oxygen species (ROS) and apoptosis in vitro and in vivo through modulation of mitochondrial homeostasis. Moreover, LINC00663 was identified as an upstream regulator of ENO1, which regulates radiotherapeutic sensitivity by downregulating ENO1 expression in BC cells. LINC00663 regulates ENO1 protein stability by enhancing the E6AP-mediated ubiquitin-proteasome pathway. In BC patients, LINC00663 expression is negatively correlated with ENO1 expression. Among patients treated with IR, those who did not respond to radiotherapy expressed lower levels of LINC00663 than those sensitive to radiotherapy. Our work established LINC00663/ENO1 critical to regulate IR-resistance in BC. Inhibition of ENO1 with a specific inhibitor or supplement of LINC00663 could be potential sensitizing therapeutic strategies for BC.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/metabolismo , Mitocôndrias/metabolismo , Fosfopiruvato Hidratase/genética , Fosfopiruvato Hidratase/metabolismo , Biomarcadores Tumorais/metabolismo , Ubiquitinação , Homeostase , Tolerância a Radiação , Proteínas de Ligação a DNA/metabolismo , Proteínas Supressoras de Tumor/metabolismo
7.
Phys Chem Chem Phys ; 25(11): 7629-7633, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36857696

RESUMO

Taking advantage of bipolar electrochemistry and a glass nanopipette, continuous single bubbles can be controlled which are generated and detached from a nanometer-sized area of confined electrochemical catalysts. The observed current oscillations offer opportunities to rapidly collect data for the statistical analysis of single-bubble generation on and departure from the catalysts.

8.
Int J Food Microbiol ; 382: 109929, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36116390

RESUMO

The primary seafood-borne pathogen Vibrio parahaemolyticus seriously threats the health of consumers preferring raw-fish products, becoming a global concern in food safety. In the present study, we found ferrous sulfate (FeSO4), a nutritional iron supplement, could efficiently induce the death of V. parahaemolyticus. Further, the bactericidal mechanisms of FeSO4 were explored. With a fluorescent probe of Fe2+, a significant influx of Fe2+ was determined in V. parahaemolyticus exposed to FeSO4, and the addition of an intracellular Fe2+ chelator was able to block the cell death. This suggested that cell death in V. parahaemolyticus induced by FeSO4 was dependent on the influx of Fe2+. It was intriguing that we did not observe the eruption of reactive oxygen species (ROS) and lipid hydroperoxides by Fe2+, but the application of liproxstatin-1 (a ferroptosis inhibitor) significantly modified the occurrence of cell death in V. parahaemolyticus. These results suggested FeSO4-induced cell death in V. parahaemolyticus be a ferroptosis differing from that in mammalian cells. Through transcriptome analysis, it was discovered that the exposure of FeSO4 disturbed considerable amounts of gene expression in V. parahaemolyticus including those involved in protein metabolism, amide biosynthesis, two-component system, amino acid degradation, carbon metabolism, citrate cycle, pyruvate metabolism, oxidative phosphorylation, and so on. These data suggested that FeSO4 was a pleiotropic antimicrobial agent against V. parahaemolyticus. Notably, FeSO4 was able to eliminate V. parahaemolyticus in salmon sashimi as well, without affecting the color, texture, shearing force, and sensory characteristics of salmon sashimi. Taken together, our results deciphered a unique ferroptosis in V. parahaemolyticus by FeSO4, and highlighted its potential in raw-fish products to control V. parahaemolyticus.


Assuntos
Vibrio parahaemolyticus , Amidas/análise , Aminoácidos , Animais , Carbono , Quelantes/análise , Citratos , Compostos Ferrosos , Corantes Fluorescentes/análise , Contaminação de Alimentos/análise , Ferro , Lipídeos/análise , Mamíferos , Piruvatos/análise , Espécies Reativas de Oxigênio/análise , Salmão , Alimentos Marinhos/análise , Vibrio parahaemolyticus/genética
9.
Complement Ther Clin Pract ; 49: 101648, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35994795

RESUMO

BACKGROUND: Fatigue, poor sleep quality and poor quality of life (QoL) are recognised as common problems for patients with inflammatory bowel disease (IBD). This study aimed to evaluate feasibility and effect of aromatherapy on these problems in patients with IBD. METHODS: Seventy IBD patients from a tertiary hospital in China were randomly assigned to an intervention group and a control group. During the 8-week intervention, the intervention group received aromatherapy through the skin and by inhalation, and the control group received routine nursing care. All patients were administered questionnaires at two sessions-the Multidimensional Fatigue Inventory, the Inflammatory Bowel Disease Questionnaire and the Pittsburgh Sleep Quality Index-before and after the intervention. The clinical trial registration number is ChiCTR2100045889. RESULTS: Postintervention fatigue and sleep problems were relieved in the intervention group compared with the control group (P < 0.05). Moreover, QoL scores improved significantly in the intervention group (P < 0.05). CONCLUSION: These results suggested that aromatherapy may be an effective complementary treatment method to relieve fatigue and sleep problems and improve quality of life in IBD patients.


Assuntos
Aromaterapia , Doenças Inflamatórias Intestinais , Transtornos do Sono-Vigília , Humanos , Aromaterapia/métodos , Qualidade de Vida , Estudos de Viabilidade , Qualidade do Sono , Fadiga/etiologia , Fadiga/terapia , Sono , Transtornos do Sono-Vigília/etiologia , Transtornos do Sono-Vigília/terapia , Doenças Inflamatórias Intestinais/complicações , Doenças Inflamatórias Intestinais/terapia , Doença Crônica
10.
Front Oncol ; 12: 939605, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875091

RESUMO

Purpose: Recently, long noncoding RNA LINC01134 has been shown to reduce cell viability and apoptosis via the antioxidant stress pathway, thereby enhancing OXA resistance in hepatocellular carcinoma. However, the association of LINC01134 with ferroptosis and the underlying molecular mechanisms remain to be elucidated. Methods: Bioinformatics analysis was employed to screen lncRNAs positively correlated with GPX4 and poor clinical prognosis. And Western blot and RT-PCR analysis in HCC cells confirmed the effect of LINC01134 on GPX4 expression. In addition, LINC01134 siRNA was transfected in HCC cells to detect the changes in cell viability, ROS, lipid peroxidation, MDA levels and GSH/GSSG levels. CCK-8, colony formation and apoptosis assays were performed to determine the effect of LINC01134 on cell death. The effect of LINC01134 and OXA on Nrf2 transcriptional binding to GPX4 was analyzed using dual luciferase reporter assay and CHIP. The expression of GPX4 and Nrf2 in HCC tissues was detected by FISH and IHC. Results: LINC01134 is a novel lncRNA positively correlated with GPx4 and associated with poor clinical prognosis. Silenced LINC01134 conferred OXA sensitivity by enhancing total ROS, lipid ROS, MDA levels and decreasing GSH/GSSG ratio. Mechanistically, LINC01134 and OXA could promote Nrf2 recruitment to the GPX4 promoter region to exert transcriptional regulation of GPX4. Clinically, LINC01134 was positively correlated with GPX4 or Nrf2, demonstrating the clinical significance of LINC01134, Nrf2 and GPX4 in OXA resistance of HCC. Conclusions: We identified LINC01134/Nrf2/GPX4 as a novel and critical axis to regulate HCC growth and progression. Targeting GPX4, knocking down LINC01134 or Nrf2 could be a potential therapeutic strategy for HCC.

11.
Int J Biol Sci ; 18(11): 4372-4387, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35864964

RESUMO

Over the past decades, the incidence of thyroid cancer (TC) rapidly increased all over the world, with the papillary thyroid cancer (PTC) accounting for the vast majority of TC cases. It is crucial to investigate novel diagnostic and therapeutic targets for PTC and explore more detailed molecular mechanisms in the carcinogenesis and progression of PTC. Based on the TCGA and GEO databases, FAM111B is downregulated in PTC tissues and predicts better prognosis in PTC patients. FAM111B suppresses the growth, migration, invasion and glycolysis of PTC both in vitro and in vivo. Furthermore, estrogen inhibits FAM111B expression by DNMT3B methylation via enhancing the recruitment of DNMT3B to FAM111B promoter. DNMT3B-mediated FAM111B methylation accelerates the growth, migration, invasion and glycolysis of PTC cells. In clinical TC patient specimens, the expression of FAM111B is inversely correlated with the expressions of DNMT3B and the glycolytic gene PGK1. Besides, the expression of FAM111B is inversely correlated while DNMT3B is positively correlated with glucose uptake in PTC patients. Our work established E2/DNMT3B/FAM111B as a crucial axis in regulating the growth and progression of PTC. Suppression of DNMT3B or promotion of FAM111B will be potential promising strategies in the estrogen induced PTC.


Assuntos
Proteínas de Ciclo Celular , DNA (Citosina-5-)-Metiltransferases , Neoplasias da Glândula Tireoide , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , DNA (Citosina-5-)-Metiltransferases/genética , Estrogênios , Regulação Neoplásica da Expressão Gênica , Glicólise , Humanos , Metilação , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/patologia , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , DNA Metiltransferase 3B
12.
J Hazard Mater ; 429: 128358, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35123131

RESUMO

Although the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been widely detected in wastewater in many countries to track the COVID-19 pandemic development, it is still a lack of clear understanding of the persistence of SARS-CoV-2 in raw sewage, especially after the end of the COVID-19 pandemic event. To fill this knowledge gap, this study conducted a field trial on the SARS-CoV-2 presence in various wastewater facilities after the end of the COVID-19 epidemics in Beijing. The result showed that the wastewater treatment facility is a large SARS-CoV-2 repository. The viral RNA was still present in hospital sewage for 15 days and was continually detected in municipal WWTPs for more than 19 days after the end of the local COVID-19 epidemics. The T90 values of the SARS-CoV-2 RNA in raw wastewater were 17.17-8.42 days in the wastewater at 4 â„ƒ and 26 â„ƒ, respectively, meaning that the decay rates of low titer viruses in raw sewage were much faster. The results confirmed that the SARS-CoV-2 RNA could persist in wastewater for more than two weeks, especially at lower temperatures. The sewage systems would be a virus repository and prolong the presence of the residual SARS-CoV-2 RNA. The study could enhance further understanding of the presence of SARS-CoV-2 RNA in raw wastewater.


Assuntos
COVID-19 , Águas Residuárias , COVID-19/epidemiologia , Humanos , Pandemias , RNA Viral/genética , SARS-CoV-2/genética
13.
ACS Omega ; 6(38): 24683-24692, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34604650

RESUMO

In recent years, the explosion accidents of liquefied petroleum gas (LPG) have induced tremendous losses. To analyze the deflagration danger of LPG, the explosion pressure and flame propagation features of the premixed LPG-air mixture in a closed pipeline at increased initial pressures and temperatures were examined by the numerical method. It has been shown that with an increase in the initial temperature, the highest explosion pressure and explosion induction period decrease, while the maximum flame temperature increases. As the initial temperature rises, the formation of the tulip flame accelerates, and the depression of the flame front increases at the same time. The elevated initial pressure raises the highest explosion pressure and the maximum flame temperature. Nevertheless, when the initial pressure exceeds 0.5 MPa, its impact on the flame temperature slowly diminishes. In addition, the gray relational analysis approach was utilized to evaluate the correlation between the initial condition and the derived parameters. The findings indicate that the initial pressure exerts the largest influence on the four explosion parameters. The research finding is important for exposing the deflagration risk features of LPG under complicated working situations, evaluating the explosion risk of correlated procedures and devices, and formulating scientific and effective explosion-proof measures.

14.
Cell Death Dis ; 12(9): 799, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404767

RESUMO

Lactate dehydrogenase A (LDHA), a critical component of the glycolytic pathway, relates to the development of various cancers, including thyroid cancer. However, the regulatory mechanism of LDHA inhibition and the physiological significance of the LDHA inhibitors in papillary thyroid cancer (PTC) are unknown. Long non-coding RNA (lncRNA) plays a vital role in tumor growth and progression. Here, we identified a novel lncRNA LINC00671 negatively correlated with LDHA, downregulating LDHA expression and predicting good clinical outcome in thyroid cancer. Moreover, hypoxia inhibits LINC00671 expression and activates LDHA expression largely through transcriptional factor STAT3. STAT3/LINC00671/LDHA axis regulates thyroid cancer glycolysis, growth, and lung metastasis both in vitro and in vivo. In thyroid cancer patients, LINC00671 expression is negatively correlated with LDHA and STAT3 expression. Our work established STAT3/LINC00671/LDHA as a critical axis to regulate PTC growth and progression. Inhibition of LDHA or STAT3 or supplement of LINC00671 could be potential therapeutic strategies in thyroid cancer.


Assuntos
Glicólise/genética , Lactato Desidrogenase 5/metabolismo , RNA Longo não Codificante/metabolismo , Fator de Transcrição STAT3/metabolismo , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/patologia , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/secundário , Camundongos Nus , Modelos Biológicos , Invasividade Neoplásica , Metástase Neoplásica , Prognóstico , RNA Longo não Codificante/genética , Hipóxia Tumoral
15.
Hepatology ; 74(6): 3213-3234, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34322883

RESUMO

BACKGROUND AND AIMS: Oxaliplatin (OXA) is one of the most common chemotherapeutics in advanced hepatocellular carcinoma (HCC), the resistance of which poses a big challenge. Long noncoding RNAs (lncRNAs) play vital roles in chemoresistance. Therefore, elucidating the underlying mechanisms and identifying predictive lncRNAs for OXA resistance is needed urgently. METHODS: RNA sequencing (RNA-seq) and fluorescence in situ hybridization (FISH) were used to investigate the OXA-resistant (OXA-R) lncRNAs. Survival analysis was performed to determine the clinical significance of homo sapiens long intergenic non-protein-coding RNA 1134 (LINC01134) and p62 expression. Luciferase, RNA immunoprecipitation (RIP), chromatin immunoprecipitation (ChIP), and chromatin isolation by RNA purification (ChIRP) assays were used to explore the mechanisms by which LINC01134 regulates p62 expression. The effects of LINC01134/SP1/p62 axis on OXA resistance were evaluated using cell viability, apoptosis, and mitochondrial function and morphology analysis. Xenografts were used to estimate the in vivo regulation of OXA resistance by LINC01134/SP1/p62 axis. ChIP, cell viability, and xenograft assays were used to identify the demethylase for LINC01134 up-regulation in OXA resistance. RESULTS: LINC01134 was identified as one of the most up-regulated lncRNAs in OXA-R cells. Higher LINC01134 expression predicted poorer OXA therapeutic efficacy. LINC01134 activates anti-oxidative pathway through p62 by recruiting transcription factor SP1 to the p62 promoter. The LINC01134/SP1/p62 axis regulates OXA resistance by altering cell viability, apoptosis, and mitochondrial homeostasis both in vitro and in vivo. Furthermore, the demethylase, lysine specific demethylase 1 (LSD1) was responsible for LINC01134 up-regulation in OXA-R cells. In patients with HCC, LINC01134 expression was positively correlated with p62 and LSD1 expressions, whereas SP1 expression positively correlated with p62 expression. CONCLUSIONS: LSD1/LINC01134/SP1/p62 axis is critical for OXA resistance in HCC. Evaluating LINC01134 expression in HCC will be effective in predicting OXA efficacy. In treatment-naive patients, targeting the LINC01134/SP1/p62 axis may be a promising strategy to overcome OXA chemoresistance.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Histona Desmetilases/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Oxaliplatina/uso terapêutico , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fator de Transcrição Sp1/metabolismo , Animais , Apoptose , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Desmetilação , Resistencia a Medicamentos Antineoplásicos/genética , Células Hep G2 , Humanos , Imunoprecipitação , Hibridização in Situ Fluorescente , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Camundongos Nus , Transplante de Neoplasias , Estresse Oxidativo , RNA Longo não Codificante/genética , Espécies Reativas de Oxigênio/metabolismo
16.
Mol Ther ; 29(9): 2737-2753, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33940159

RESUMO

Phosphoglycerate kinase 1 (PGK1), a critical component of the glycolytic pathway, relates to the development of various cancers. However, the mechanisms of PGK1 inhibition and physiological significance of PGK1 inhibitors in cancer cells are unclear. Long non-coding RNAs (lncRNAs) play a vital role in tumor growth and progression. Here, we identify a lncRNA LINC00926 that negatively regulates PGK1 expression and predicts good clinical outcome of breast cancer. LINC00926 downregulates PGK1 expression through the enhancement of PGK1 ubiquitination mediated by E3 ligase STUB1. Moreover, hypoxia inhibits LINC00926 expression and activates PGK1 expression largely through FOXO3A. FOXO3A/LINC00926/PGK1 axis regulates breast cancer glycolysis, tumor growth, and lung metastasis both in vitro and in vivo. In breast cancer patients, LINC00926 expression is negatively correlated with PGK1 and positively correlated with FOXO3A expression. Our work established FOXO3A/LINC00926/PGK1 as a critical axis to regulate breast cancer growth and progression. Targeting PGK1 or supplement of LINC00926 or FOXO3A could be potential therapeutic strategies in breast cancer.


Assuntos
Neoplasias da Mama/patologia , Proteína Forkhead Box O3/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Fosfoglicerato Quinase/genética , RNA Longo não Codificante/genética , Adulto , Idoso , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Células MCF-7 , Camundongos , Pessoa de Meia-Idade , Metástase Neoplásica , Transplante de Neoplasias , Fosforilação , Prognóstico , Transdução de Sinais , Efeito Warburg em Oncologia
17.
Anal Chem ; 93(18): 7118-7124, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33905222

RESUMO

NADH/NAD+ is pivotal to fundamental biochemistry research and molecular diagnosis, but recognition and detection for them are a big challenge at the single-molecule level. Inspired by the biological system, here, we designed and synthesized a biomimetic NAD+/NADH molecular clamp (MC), octakis-(6-amino-6-deoxy)-γ-cyclomaltooctaose, and harbored in the engineered α-HL(M113R)7 nanopore, forming a novel single-molecule biosensor. The single-molecule measurement possesses high selectivity and a high signal-to-noise ratio, allowing to simultaneously recognize and detect for sensing NADH/NAD+ and their transformations.


Assuntos
Técnicas Biossensoriais , Nanoporos , Biomimética , NAD , Nanotecnologia
18.
Onco Targets Ther ; 13: 10515-10523, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33116630

RESUMO

BACKGROUND: Renal cell cancer (RCC) is one of the most lethal malignancies of the kidney in adults. mTOR (mammalian target of rapamycin) signaling pathway plays a pivotal role in RCC tumorigenesis and progression and inhibitors targeting the mTOR pathway have been widely used in advanced RCC treatment. Therefore, it is of great significance to explore the potential regulators of the mTOR pathway as RCC therapeutic targets. MATERIALS AND METHODS: Bioinformatics analysis was used to screen out the most significant differentially expressed genes in the RCC dataset of The Cancer Genome Atlas (TCGA). Real-time PCR and Western-blot analysis were utilized to examine the expression of inositol-1,4,5-trisphosphate-3-kinase-A (ITPKA) in four RCC cell lines and one human embryonic kidney cell line. Cell counting Kit-8 and colony formation assay were performed to estimate the effect of ITPKA on the proliferation ability of RCC cells. Wound healing and Transwell assays were used to test the effect of ITPKA on RCC cell migration and invasion. Xenograft formation assay was performed in nude mice to investigate the effect of ITPKA in vivo. mTORC1 pathway inhibitor was added to explore the mechanisms by which ITPKA regulates RCC cell growth and progression. RESULTS: Based on bioinformatics analysis, ITPKA is screened out as one of the most significant differentially expressed genes in RCC. ITPKA is upregulated and positively correlated with RCC malignancy and poorer prognosis. ITPKA promotes RCC growth, migration and invasion in cultured cells, and accelerates tumor growth in nude mice. Mechanistically, ITPKA stimulates the mTORC1 signaling pathway which is a requirement for ITPKA modulation of RCC cell proliferation, migration and invasion. CONCLUSION: Our data demonstrate a critical regulatory role of the ITPKA in RCC and suggest that ITPKA/mTORC1 axis may be a promising target for diagnosis and treatment of RCC.

19.
Anal Chem ; 92(5): 3827-3833, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32048508

RESUMO

A crowded cellular environment is highly associated with many significant biological processes. However, the effect of molecular crowding on the translocation behavior of DNA through a pore has not been explored. Here, we use nanopore single-molecule analytical technique to quantify the thermodynamics and kinetics of DNA transport under heterogeneous cosolute PEGs. The results demonstrate that the frequency of the translocation event exhibits a nonmonotonic dependence on the crowding agent size, while both the event frequency and translocation time increase monotonically with increasing crowder concentration. In the presence of PEGs, the rate of DNA capture into the nanopore elevates 118.27-fold, and at the same time the translocation velocity decreases from 20 to 120 µs/base. Interestingly, the impact of PEG 4k on the DNA-nanopore interaction is the most notable, with up to ΔΔG = 16.27 kJ mol-1 change in free energy and 764.50-fold increase in the binding constant at concentration of 40% (w/v). The molecular crowding effect will has broad applications in nanopore biosensing and nanopore DNA sequencing in which the strategy to capture analyte and to control the transport is urgently required.


Assuntos
DNA de Cadeia Simples/metabolismo , Nanoporos , DNA/química , DNA de Cadeia Simples/química , Cinética , Bicamadas Lipídicas/química , Polietilenoglicóis/química , Termodinâmica
20.
Biosens Bioelectron ; 150: 111906, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31780404

RESUMO

Circulating tumor DNA (ctDNA) in the blood is an important biomarker for noninvasive diagnosis, assessment, prediction and treatment of cancer. However, sensing performance of solid nanopore is limited by the fast kinetics of small DNA targets and unmatched dimensions. Here, we combines hybridization chain reaction (HCR) with nanopore detection to translate the presence of a small DNA target to characteristic nanopore signals of a long nicked DNA polymer. The amplification of nanopore signals obtained by HCR not only overcomes the functional limitation of solid nanopore, but also significantly elevates both selectivity and signal-to-noise ratio, which allows to detect ctDNA at a detection limit of 2.8 fM (S/N = 3) and the single-base resolution. Furthermore, the proposed method can apply in detection of ctDNA of KRAS G12DM in serum sample.


Assuntos
Técnicas Biossensoriais/métodos , DNA Tumoral Circulante/sangue , Nanoporos , Hibridização de Ácido Nucleico/métodos , DNA Tumoral Circulante/genética , Humanos , Limite de Detecção , Nanoporos/ultraestrutura , Neoplasias/sangue , Neoplasias/genética , Proteínas Proto-Oncogênicas p21(ras)/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA