Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(11): 8017-8028, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38456817

RESUMO

d-Amino acids are signals for biofilm disassembly. However, unexpected metabolic pathways severely attenuate the utilization of d-amino acids in biofilm disassembly, resulting in unsatisfactory efficiency. Herein, three-dimensional poly(d-amino acid) nanoparticles (NPs), which possess the ability to block intracellular metabolism, are constructed with the aim of disassembling the biofilms. The obtained poly(α-N-acryloyl-d-phenylalanine)-block-poly(ß-N-acryloyl-d-aminoalanine NPs (denoted as FA NPs) present α-amino groups and α-carboxyl groups of d-aminoalanine on their surface, which guarantees that FA NPs can effectively insert into bacterial peptidoglycan (PG) via the mediation of PG binding protein 4 (PBP4). Subsequently, the FA NPs trigger the detachment of amyloid-like fibers that connect to the PG and reduce the number of polysaccharides and proteins in extracellular polymeric substances (EPS). Finally, FA NPs damage the structural stability of EPS and lead to the disassembly of the biofilm. Based on this feature, FA NPs significantly enhance the killing efficacy of encapsulated sitafloxacin sesquihydrate (Sita) by facilitating the penetration of Sita within the biofilm, achieving complete elimination of Staphylococcal biofilm in mice. Therefore, this study strongly demonstrates that FA NPs can effectively improve biofilm disassembly efficacy and provide great potential for bacterial biofilm infection treatment.


Assuntos
Aminoácidos , Nanopartículas , Animais , Camundongos , Aminoácidos/química , Peptidoglicano , Biofilmes , Polissacarídeos , Nanopartículas/química
2.
J Mater Chem B ; 12(5): 1194-1207, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38197141

RESUMO

Cancer remains one of the serious threats to human health. The relationship between bacteria and various tumours has been widely reported in recent years, and studies on intra-tumoral bacteria have become important as intra-tumoral bacteria directly affect the tumorigenesis, progression, immunity and metastatic processes. Therefore, eliminating these commensal intra-tumoral bacteria while treating tumour is expected to be a potential strategy to further enhance the clinical outcome of tumour therapy. Drug delivery systems (DDSs) are widely used to deliver antibiotics and chemotherapeutic drugs for antibacterial and anticancer applications, respectively. Thus, this review firstly provides a comprehensive summary of the association between intra-tumoral bacteria and a host of tumours, followed by a description of advanced DDSs for improving the therapeutic efficacy of cancer treatment through the elimination of intra-tumoral bacteria. It is hoped that this review will provide guidelines for the therapeutic and "synergistic antimicrobial and antitumour" drug delivery strategy.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Antineoplásicos/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias
3.
ACS Appl Mater Interfaces ; 16(3): 3202-3214, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38207171

RESUMO

Bacterial biofilm infection threatens public health, and efficient treatment strategies are urgently required. Phototherapy is a potential candidate, but it is limited because of the off-targeting property, vulnerable activity, and normal tissue damage. Herein, cascade-responsive nanoparticles (NPs) with a synergistic effect of phototherapy and chemotherapy are proposed for targeted elimination of biofilms. The NPs are fabricated by encapsulating IR780 in a polycarbonate-based polymer that contains disulfide bonds in the main chain and a Schiff-base bond connecting vancomycin (Van) pendants in the side chain (denoted as SP-Van@IR780 NPs). SP-Van@IR780 NPs specifically target bacterial biofilms in vitro and in vivo by the mediation of Van pendants. Subsequently, SP-Van@IR780 NPs are decomposed into small size and achieve deep biofilm penetration due to the cleavage of disulfide bonds in the presence of GSH. Thereafter, Van is then detached from the NPs because the Schiff base bonds are broken at low pH when SP@IR780 NPs penetrate into the interior of biofilm. The released Van and IR780 exhibit a robust synergistic effect of chemotherapy and phototherapy, strongly eliminate the biofilm both in vitro and in vivo. Therefore, these biocompatible SP-Van@IR780 NPs provide a new outlook for the therapy of bacterial biofilm infection.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Nanopartículas , Vancomicina/farmacologia , Nanopartículas/química , Biofilmes , Concentração de Íons de Hidrogênio , Dissulfetos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
4.
Bioact Mater ; 33: 341-354, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38107603

RESUMO

Nitric oxide (NO) enhanced photodynamic therapy (PDT) is a promising approach to overcome drug tolerance and resistance to biofilm but is limited by its short excitation wavelengths and low yield of reactive oxygen species (ROS). Herein, we develop a compelling degradable polymer-based near-infrared II (NIR-II, 1000-1700 nm) photosensitizer (PNIR-II), which can maintain 50 % PDT efficacy even under a 2.6 cm tissue barrier. Remarkably, PNIR-II is synthesized by alternately connecting the electron donor thiophene to the electron acceptors diketopyrrolopyrrole (DPP) and boron dipyrromethene (BODIPY), where the intramolecular charge transfer properties can be tuned to increase the intersystem crossover rate and decrease the internal conversion rate, thereby stabilizing the NIR-II photodynamic rather than photothermal effect. For exerting a combination therapy to eradicate multidrug-resistant biofilms, PNIR-II is further assembled into nanoparticles (NPs) with a synthetic glutathione-triggered NO donor polymer. Under 1064 nm laser radiation, NPs precisely release ROS and NO that triggered by over-expressed GSH in the biofilm microenvironment, thereby forming more bactericidal reactive nitrogen species (RNS) in vitro and in vivo in the mice model that orderly destroy biofilm of multidrug-resistant Staphylococcus aureus cultures from clinical patients. It thus provides a new outlook for destroy the biofilm of deep tissues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA