RESUMO
Biocompatible batteries can power implantable electronic devices and have broad applications in medicine. However, the controlled degradation of implantable batteries, the impact of battery catabolites on surrounding tissues, and wireless charging designs are often overlooked. Here, we designed an implantable zinc ion battery (ZIB) using a gelatin/polycaprolactone-based composite gel electrolyte. The prepared ZIBs deliver a high specific capacity of 244.0 mA h g-1 (0.5C) and long cycling stability of 300 cycles (4C). ZIBs were completely degraded within 8 weeks in rats and 30 days in a phosphate-buffered saline lipase solution, demonstrating good biocompatibility and degradability. ZIBs catabolites induced macrophage M2 polarization and exhibited anti-inflammatory properties, with mRNA levels of the M2 markers Arg-1 and CD206 up-regulated 15.8-fold and 13.4-fold, respectively, compared to the blank control group. Meanwhile, the expressions of two typical osteogenic markers, osteopontin and osteocalcin, were up-regulated by 3.6-fold and 5.6-fold, respectively, demonstrating that designed ZIBs promoted osteogenic differentiation of bone marrow mesenchymal stem cells. Additionally, a wireless energy transmission module was designed using 3D printing technology to realize real-time charging of the ZIB in rats. The designed ZIB is a promising power source for implantable medical electronic devices and also serves as a functional material to accelerate bone repair.
Assuntos
Fontes de Energia Elétrica , Osteogênese , Zinco , Osteogênese/efeitos dos fármacos , Animais , Ratos , Zinco/química , Células-Tronco Mesenquimais/metabolismo , Poliésteres/química , Ratos Sprague-Dawley , Masculino , Próteses e Implantes , Gelatina/química , Íons/química , Camundongos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Diferenciação Celular/efeitos dos fármacosRESUMO
Li metal batteries (LMBs) offer significant potential as high energy density alternatives; nevertheless, their performance is hindered by the slow desolvation process of electrolytes, particularly at low temperatures (LT), leading to low coulombic efficiency and limited cycle stability. Thus, it is essential to optimize the solvation structure thereby achieving a rapid desolvation process in LMBs at LT. Herein, we introduce branch chain-rich diisopropyl ether (DIPE) into a 2.5 M Li bis(fluorosulfonyl)imide dipropyl ether (DPE) electrolyte as a co-solvent for high-performance LMBs at - 20 °C. The incorporation of DIPE not only enhances the disorder within the electrolyte, but also induces a steric hindrance effect form DIPE's branch chain, excluding other solvent molecules from Li+ solvation sheath. Both of these factors contribute to the weak interactions between Li+ and solvent molecules, effectively reducing the desolvation energy of the electrolyte. Consequently, Li (50 µm)||LFP (mass loading ~ 10 mg cm-2) cells in DPE/DIPE based electrolyte demonstrate stable performance over 650 cycles at - 20 °C, delivering 87.2 mAh g-1, and over 255 cycles at 25 °C with 124.8 mAh g-1. DIPE broadens the electrolyte design from molecular structure considerations, offering a promising avenue for highly stable LMBs at LT.