Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Divers ; 2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37118160

RESUMO

Diabetes is a leading cause of kidney failure, blindness, heart attacks and lower limb amputation. Prevalence of diabetes is rising globally. α-glucosidase is validated target for controlling hyperglycemia because of its role in catalysing hydrolysis of carbohydrates to glucose in GIT. In an attempt to find novel safe and effective α-glucosidase inhibitors, coumarin linked thiazole was identified as potential scaffold on the basis of its interactions with the active site of α-glucosidase studied in silico. A series of coumarin linked thiazole derivatives were synthesized and analyzed for α-glucosidase inhibitory potential in an in-vitro assay. The synthesized molecules showed potent inhibition of α-glucosidase with IC50 values ranging from 0.14 to 9.38 µM. The most potent compound 2-[(4-bromophenyl) amino)-N-(4- (2-oxo-2H-chromen-3-yl) thiazol-2-yl] acetamide was further docked with α-glucosidase and molecular dynamics studies were carried out for 100 ns which suggested the stability of protein and ligand in the protein active site over the simulation period and role of hydrophobic interactions slightly more than the electrostatic/polar interactions in ligand- receptor stability. In summary, our results demonstrate efficacy of coumarin-linked thiazole as potential leads for further optimization and development.

2.
RSC Adv ; 12(24): 15196-15214, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35693228

RESUMO

Pseudomonas aeruginosa infections are attributed to its ability to form biofilms and are difficult to eliminate with antibiotic treatment. Biofilm formation is regulated by quorum sensing (QS), an intracellular bacterial communication mechanism that allows the activation of numerous virulence factors and secondary metabolites. Targeting the QS pathway is a potential approach that prevents QS-controlled phenotypes and biofilm formation. For the first time, the current work has identified antiquorum sensing activity in the partially purified four fractions from the hot ethyl acetate extract of Cassia fistula fruit pods. Of the four fractions, only fraction-1 gave decreased AHL activity; the phytoconstituents in this fraction were identified as rhein, 3-aminodibenzofuran, 5-(hydroxymethyl)-2-(dimethoxymethyl)furan, and dihydrorhodamine. Fraction-1 (1 mg ml-1) and rhein (0.15 mg ml-1) showed 63% and 42.7% reduction in short-chain AHL production, respectively, without hindering the bacterial growth. Fraction-1 inhibited QS-mediated extracellular virulence factors viz. protease, elastase, pyocyanin, and rhamnolipid (p < 0.05). Quantitative analysis of biofilm formation showed 77% & 62.4% reduction by fraction-1 (1 mg ml-1) and rhein (0.15 mg ml-1) respectively. Confocal laser microscopy (CLMS) & scanning electron microscopy (SEM) confirmed the reduction of biofilm formation in Pseudomonas aeruginosa upon treatment with fraction-1 and rhein. Moreover, the in vivo study displayed that fraction-1 and rhein (standard) significantly enhanced the survival of Caenorhabditis elegans by suppressing the potency of virulence factors of Pseudomonas aeruginosa. Quantitative real-time polymerase chain reaction results demonstrated the down-regulation of QS-related genes, lasI, lasR, rhlI, and rhlR. In addition, in silico analysis divulged that a component identified by GC-MS displayed a strong affinity towards LasI and LasR. These findings suggest that potent phytochemicals from fraction-1, including rhein, could serve as novel phytotherapeutics in controlling emerging infections of antibiotic-resistant bacterial pathogens like Pseudomonas aeruginosa.

3.
J Biomol Struct Dyn ; 40(6): 2498-2515, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33111617

RESUMO

To confront a disease like Alzheimer's disease having complex pathogenesis, development of multitarget-directed ligands has emerged as a promising drug discovery approach. In our endeavor towards the development of multitarget-directed ligands for Alzheimer's disease, a series of indoloquinoxaline derivatives were designed and synthesized. In vitro cholinesterase inhibition studies revealed that all the synthesized compounds exhibited moderate to good cholinesterase inhibitory activity. 6-(6-(Piperidin-1-yl)hexyl)-6H-indolo[2,3-b]quinoxaline 9f was identified as the most potent and selective BuChE inhibitor (IC50 = 0.96 µM, selectivity index = 0.17) that possessed 2 fold higher BuChE inhibitory activity compared to the commercially approved reference drug donepezil (IC50 = 1.87 µM). Moreover, compound 9f is also endowed with self-induced Aß1-42 aggregation inhibitory activity (51.24% inhibition at 50 µM concentration). Some of the compounds of the series also displayed moderate anti-oxidant activity. To perceive a putative binding mode of the compound 9f, molecular docking studies were carried out, and the results pointed out significant interactions of compound 9f with the enzymes in the binding sites of cholinesterases as well as Aß1-42. Additionally, compound 9f exhibited favorable in silico ADMET properties. Put together these findings project compound 9f as a potential multitarget-directed ligand in the direction of developing novel anti-AD drugs.Communicated by Ramaswamy H. Sarma.


Assuntos
Doença de Alzheimer , Inibidores da Colinesterase , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides , Inibidores da Colinesterase/química , Colinesterases/metabolismo , Desenho de Fármacos , Humanos , Ligantes , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
4.
J Biomol Struct Dyn ; 40(20): 10278-10299, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34215173

RESUMO

With the aim to combat a multi-faceted neurodegenerative Alzheimer's disease (AD), a series of carbazole-based semicarbazide and hydrazide derivatives were designed, synthesized and assessed for their cholinesterase (ChE) inhibitory, antioxidant and biometal chelating activity. Among them, (E)-2-((9-ethyl-9H-carbazol-3-yl)methylene)-N-(pyridin-2-yl)hydrazinecarbothioamide (62) and (E)-2-((9-ethyl-9H-carbazol-3-yl)methylene)-N-(5-chloropyridin-2-yl)hydrazinecarbothioamide (63) emerged as the premier candidates with good ChE inhibitory activities (IC50 values of 1.37 µM and 1.18 µM for hAChE, IC50 values of 2.69 µM and 3.31 µM for EqBuChE, respectively). All the test compounds displayed excellent antioxidant activity (reduction percentage of DPPH values for compounds (62) and (63) were 85.67% and 84.49%, respectively at 100 µM concentration). Compounds (62) and (63) conferred specific copper ion chelating property in metal chelation study. Molecular docking studies of compounds (62) and (63) indicate strong interactions within the active sites of both the ChE enzymes. Besides that, these compounds also exhibited significant in silico drug-like pharmacokinetic properties. Thus, taken together, they can serve as a starting point in the designing of multifunctional ligands in pursuit of potential anti-AD agents that might further prevent the progression of ADs.Communicated by Ramaswamy H. Sarma.


Assuntos
Doença de Alzheimer , Semicarbazonas , Humanos , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Acetilcolinesterase/química , Semicarbazonas/farmacologia , Hidrazonas , Simulação de Acoplamento Molecular , Carbazóis/farmacologia , Carbazóis/química , Quelantes/farmacologia , Quelantes/química , Antioxidantes/farmacologia , Antioxidantes/química , Doença de Alzheimer/tratamento farmacológico , Relação Estrutura-Atividade
5.
Mol Divers ; 25(1): 383-401, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32737681

RESUMO

The Corona virus Disease (COVID-19) is caused because of novel coronavirus (SARS-CoV-2) pathogen detected in China for the first time, and from there it spread across the globe creating a worldwide pandemic of severe respiratory complications. The virus requires structural and non-structural proteins for its multiplication that are produced from polyproteins obtained by translation of its genomic RNA. These polyproteins are converted into structural and non-structural proteins mainly by the main protease (Mpro). A systematic screening of a drug library (having drugs and diagnostic agents which are approved by FDA or other world authorities) and the Asinex BioDesign library was carried out using pharmacophore and sequential conformational precision level filters using the Schrodinger Suite. From the screening of approved drug library, three antiviral agents ritonavir, nelfinavir and saquinavir were predicted to be the most potent Mpro inhibitors. Apart from these pralmorelin, iodixanol and iotrolan were also identified from the systematic screening. As iodixanol and iotrolan carry some limitations, structural modifications in them could lead to stable and safer antiviral agents. Screenings of Asinex BioDesign library resulted in 20 molecules exhibiting promising interactions with the target protein Mpro. They can broadly be categorized into four classes based on the nature of the scaffold, viz. disubstituted pyrazoles, cyclic amides, pyrrolidine-based compounds and miscellaneous derivatives. These could be used as potential molecules or hits for further drug development to obtain clinically useful therapeutic agents for the treatment of COVID-19.


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus/antagonistas & inibidores , Inibidores de Proteases/farmacologia , SARS-CoV-2/efeitos dos fármacos , COVID-19/virologia , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Programas de Rastreamento/métodos , Simulação de Acoplamento Molecular , Pandemias/prevenção & controle , SARS-CoV-2/metabolismo , Proteínas não Estruturais Virais/antagonistas & inibidores
6.
ACS Chem Neurosci ; 11(21): 3557-3574, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33073564

RESUMO

The inadequate clinical efficacy of the present anti-Alzheimer's disease (AD) drugs and their low impact on the progression of Alzheimer's disease in patients have revised the research focus from single targets to multitarget-directed ligands. A novel series of substituted triazinoindole derivatives were obtained by introducing various substituents on the indole ring for the development of multitarget-directed ligands as anti-AD agents. The experimental data indicated that some of these compounds exhibited significant anti-AD properties. Among them, 8-(piperidin-1-yl)-N-(6-(pyrrolidin-1-yl)hexyl)-5H-[1,2,4]triazino[5,6-b]indol-3-amine (60), the most potent cholinesterase inhibitor (AChE, IC50 value of 0.32 µM; BuChE, IC50 value of 0.21 µM), was also found to possess significant self-mediated Aß1-42 aggregation inhibitory activity (54% at 25 µM concentration). Additionally, compound 60 showed strong antioxidant activity. In the PAMPA assay, compound 60 exhibited blood-brain barrier penetrating ability. An acute toxicity study in rats demonstrated no sign of toxicity at doses up to 2000 mg/kg. Furthermore, compound 60 significantly restored the cognitive deficits in the scopolamine-induced mice model and Aß1-42-induced rat model. In the in silico ADMET prediction studies, the compound satisfied all the parameters of CNS acting drugs. These results highlighted the potential of compound 60 to be a promising multitarget-directed ligand for the development of potential anti-AD drugs.


Assuntos
Doença de Alzheimer , Preparações Farmacêuticas , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Inibidores da Colinesterase/farmacologia , Desenho de Fármacos , Humanos , Ligantes , Camundongos , Ratos , Relação Estrutura-Atividade
7.
Bioorg Chem ; 101: 103977, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32485470

RESUMO

Molecules capable of engaging with multiple targets associated with pathological condition of Alzheimer's disease have proved to be potential anti-Alzheimer's agents. In our goal to develop multitarget-directed ligands for the treatment of Alzheimer's disease, a novel series of carbazole-based stilbene derivatives were designed by the fusion of carbazole ring with stilbene scaffold. The designed compounds were synthesized and evaluated for their anti-AD activities including cholinesterase inhibition, Aß aggregation inhibition, antioxidant and metal chelation properties. Amongst them, (E)-1-(4-(2-(9-ethyl-9H-carbazol-3-yl)vinyl)phenyl)-3-(2-(pyrrolidin-1-yl)ethyl)thiourea (50) appeared to be the best candidate with good inhibitory activities against AChE (IC50 value of 2.64 µM) and BuChE (IC50 value of 1.29 µM), and significant inhibition of self-mediated Aß1-42 aggregation (51.29% at 25 µM concentration). The metal chelation study showed that compound (50) possessed specific copper ion chelating property. Additionally, compound (50) exhibited moderate antioxidant activity. To understand the binding mode of 50, molecular docking studies were performed, and the results indicated strong non-covalent interactions of 50 with the enzymes in the active sites of AChE, BuChE as well as of the Aß1-42 peptide. Additionally, it showed promising in silico ADMET properties. Putting together, these findings evidently showed compound (50) as a potential multitarget-directed ligand in the course of developing novel anti-AD drugs.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Estilbenos/uso terapêutico , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
8.
Chem Biodivers ; 17(5): e1900550, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32149467

RESUMO

Two series of carbazole analogs of 8-methoxy-N-substituted-9H-carbazole-3-carboxamides (series 1) and carbazolyl substituted rhodanines (series 2) were synthesized through facile synthetic routes. All the final compounds from these two series were evaluated for their preliminary in vitro antifungal and antibacterial activity against four fungal (Candida albicans, Cryptococcus neoformans, Cryptococcus tropicalis and Aspergillus niger) and four bacterial (Staphylococcus aureus, Bacillus subtilis, Escherichia coli and Pseudomonas aeruginosa) strains, respectively. Among the tested compounds, three compounds of series 1 displayed promising antifungal and antibacterial activity, especially against C. neoformans and S. aureus. In addition, one compound of series 1 displayed notable antimicrobial activity (MIC: 6.25 µg/mL) against clinical isolates of C. albicans and C. neoformans (MIC: 12.5 µg/mL). From the second series, four compounds exhibited significant antifungal and antibacterial activity, especially against C. neoformans and S. aureus. The most active compound of series 2 displayed a prominent antimicrobial activity against C. neoformans (MIC: 3.125 µg/mL) and S. aureus (MIC: 1.56 µg/mL), respectively.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Carbazóis/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antifúngicos/síntese química , Antifúngicos/química , Aspergillus niger/efeitos dos fármacos , Bacillus subtilis/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Carbazóis/síntese química , Carbazóis/química , Cryptococcus/efeitos dos fármacos , Relação Dose-Resposta a Droga , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade
10.
ACS Chem Neurosci ; 10(8): 3635-3661, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31310717

RESUMO

The multifaceted nature of Alzheimer's disease (AD) demands treatment with multitarget-directed ligands (MTDLs) to confront the key pathological aberrations. A novel series of triazinoindole derivatives were designed and synthesized. In vitro studies revealed that all the compounds showed moderate to good anticholinesterase activity; the most active compound 23e showed an IC50 value of 0.56 ± 0.02 µM for AChE and an IC50 value of 1.17 ± 0.09 µM for BuChE. These derivatives are also endowed with potent antioxidant activity. To understand the plausible binding mode of the compound 23e, molecular docking studies and molecular dynamics simulation studies were performed, and the results indicated significant interactions of 23e within the active sites of AChE as well as BuChE. Compound 23e successfully diminished H2O2-induced oxidative stress in SH-SY5Y cells and displayed excellent neuroprotective activity against H2O2 as well as Aß-induced toxicity in SH-SY5Y cells in a concentration dependent manner. Furthermore, it did not show any significant toxicity in neuronal SH-SY5Y cells in the cytotoxicity assay. Compound 23e did not show any acute toxicity in rats at doses up to 2000 mg/kg, and it significantly reversed scopolamine-induced memory deficit in mice model. Additionally, compound 23e showed notable in silico ADMET properties. Taken collectively, these findings project compound 23e as a potential balanced MTDL in the evolution process of novel anti-AD drugs.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/farmacologia , Aprendizagem em Labirinto/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Doença de Alzheimer/metabolismo , Animais , Linhagem Celular Tumoral , Inibidores da Colinesterase/uso terapêutico , Humanos , Peróxido de Hidrogênio/farmacologia , Masculino , Camundongos , Simulação de Acoplamento Molecular , Neurônios/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo/fisiologia , Relação Estrutura-Atividade
11.
Bioorg Med Chem Lett ; 29(16): 2338-2344, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31227345

RESUMO

InhA (Enoyl-ACP reductase) plays a crucial role in the biosynthetic pathway of cell wall synthesis in Mycobacterium tuberculosis (Mtb). Isoniazid (INH) is an important first-line drug, which inhibits InhA. The rapid increase in resistance to INH and currently marketed drugs as well as emergence of MDR-TB and XDR-TB has complicated the diagnosis and treatment of Mtb with ever increasing threat to human kind. Herein, we report novel N-methyl carbazole derivatives as potential anti-TB compounds acting directly via InhA inhibition. All the synthesized final compounds were screened against Mtb virulent cell line H37Rv and investigated the InhA enzyme inhibition. Interestingly, compound 9e displayed promising inhibition (91%) at 50 µM concentration and IC50 of 2.82 µM against InhA. To understand the ligand receptor interaction between compound 9e and InhA, molecular docking and molecular dynamics experiments were performed. The computational results were in agreement with the observed experimental data. Further, the cytotoxicity studies on mammalian cells revealed that all the compounds were safe.


Assuntos
Antituberculosos/farmacologia , Carbazóis/farmacologia , Descoberta de Drogas , Mycobacterium tuberculosis/efeitos dos fármacos , Rodanina/farmacologia , Antituberculosos/síntese química , Antituberculosos/química , Carbazóis/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacterium tuberculosis/enzimologia , Rodanina/química , Relação Estrutura-Atividade
12.
Eur J Med Chem ; 130: 107-123, 2017 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-28242547

RESUMO

A novel series of vicinal diaryl azole-urea derivatives were synthesized and evaluated for their potential to inhibit SOAT enzyme. Among the reported compounds, compound (12d) emerged as the most potent compound with an IC50 value of 2.43 µM. In polaxamer-407 induced lipoprotein lipase inhibition model, compound (12d) reduced triglyceride turnover in vivo. Compound (12d) also showed dose-dependent prevention of serum total cholesterol and prevention of LDL-C elevation at a dose of 30 mg/kg. Furthermore, compound (12d) showed potential to stop falling levels of serum HDL-C dose-dependently and improved the atherogenic index. Effect of 12d on body weight, plaque formation and development of atherogenic lesions were studied. Toxicological study of compound (12d) indicated that at a dose of 2000 mg/kg, 12d was devoid of any signs of toxicity or mortality.


Assuntos
Anticolesterolemiantes/química , Azóis/farmacologia , Inibidores Enzimáticos/química , Esterol O-Aciltransferase/antagonistas & inibidores , Ureia/farmacologia , Animais , Anticolesterolemiantes/farmacologia , Aterosclerose/prevenção & controle , Azóis/química , Colesterol/sangue , LDL-Colesterol/sangue , LDL-Colesterol/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Humanos , Hipolipemiantes/farmacologia , Lipase Lipoproteica/antagonistas & inibidores , Triglicerídeos/sangue , Ureia/química
13.
Mol Neurobiol ; 54(9): 6697-6722, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-27744571

RESUMO

Excitotoxicty, a key pathogenic event is characteristic of the onset and development of neurodegeneration. The glutamatergic neurotransmission mediated through different glutamate receptor subtypes plays a pivotal role in the onset of excitotoxicity. The role of NMDA receptor (NMDAR), a glutamate receptor subtype, has been well established in the excitotoxicity pathogenesis. NMDAR overactivation triggers excessive calcium influx resulting in excitotoxic neuronal cell death. In the present study, a series of benzazepine derivatives, with the core structure of 3-methyltetrahydro-3H-benzazepin-2-one, were synthesised in our laboratory and their NMDAR antagonist activity was determined against NMDA-induced excitotoxicity using SH-SY5Y cells. In order to assess the multi-target-directed potential of the synthesised compounds, Aß1-42 aggregation inhibitory activity of the most potent benzazepines was evaluated using thioflavin T (ThT) and Congo red (CR) binding assays as Aß also imparts toxicity, at least in part, through NMDAR overactivation. Furthermore, neuroprotective, free radical scavenging, anti-oxidant and anti-apoptotic activities of the two potential test compounds (7 and 14) were evaluated using primary rat hippocampal neuronal culture against Aß1-42-induced toxicity. Finally, in vivo neuroprotective potential of 7 and 14 was assessed using intracerebroventricular (ICV) rat model of Aß1-42-induced toxicity. All of the synthesised benzazepines have shown significant neuroprotection against NMDA-induced excitotoxicity. The most potent compound (14) showed relatively higher affinity for the glycine binding site as compared with the glutamate binding site of NMDAR in the molecular docking studies. 7 and 14 have been shown experimentally to abrogate Aß1-42 aggregation efficiently. Additionally, 7 and 14 showed significant neuroprotective, free radical scavenging, anti-oxidant and anti-apoptotic properties in different in vitro and in vivo experimental models. Finally, 7 and 14 attenuated Aß1-42-induced tau phosphorylation by abrogating activation of tau kinases, i.e. MAPK and GSK-3ß. Thus, the results revealed multi-target-directed potential of some of the synthesised novel benzazepines against excitotoxicity.


Assuntos
Benzazepinas/administração & dosagem , Benzazepinas/síntese química , Sistemas de Liberação de Medicamentos/métodos , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Antagonistas de Aminoácidos Excitatórios/síntese química , Animais , Benzazepinas/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos/métodos , Antagonistas de Aminoácidos Excitatórios/metabolismo , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Ratos , Receptores de Glutamato/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo
14.
Neurotox Res ; 29(4): 495-513, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26797524

RESUMO

Previous reports suggest that Alzheimer's disease is protected by cholinesterase inhibitors. We synthesized some isoalloxazine derivatives and evaluated them using in vitro cholinesterase inhibition assay. Two of the compounds (7m and 7q) were figured out as potent cholinesterase inhibitors. They further showed anti-Aß aggregatory activity in the in vitro assay. The current study deals with the evaluation of neuroprotective potentials of the potent compounds (7m and 7q) using different in vitro and in vivo experiments. The compounds were first assessed for their tendency to cross blood-brain barrier using in vitro permeation assay. They were evaluated using scopolamine-induced amnesic mice model. Additionally, ROS scavenging and anti-apoptotic properties of 7m and 7q were established against Aß1-42-induced toxicity in rat hippocampal neuronal cells. 7m and 7q were also evaluated using Aß1-42-induced Alzheimer's rat model. Lastly, their involvement in Wnt/ß-catenin pathway was also demonstrated. The results indicated good CNS penetration for 7m and 7q. The neuroprotective effects of 7m and 7q were evidenced by improved cognitive ability in both scopolamine and Aß1-42-induced Alzheimer's-like condition in rodents. The in vivo results also confirmed their anti-cholinesterase and anti-oxidant potential. Immunoblot results showed that treatment with 7m and 7q decreased Aß1-42, p-tau, cleaved caspase-3, and cleaved PARP levels in Aß1-42-induced Alzheimer's rat brain. Additionally, immunoblot results demonstrated that 7m and 7q activated the Wnt/ß-catenin pathway as evidenced by increased p-GSK-3, ß-catenin, and neuroD1 levels in Aß1-42-induced Alzheimer's rat brain. These findings have shown that isoalloxazine derivatives (7m and 7q) could be the potential leads for developing effective drugs for the treatment of AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Flavinas/farmacologia , Flavinas/uso terapêutico , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo , Acetilcolinesterase/metabolismo , Doença de Alzheimer/induzido quimicamente , Peptídeos beta-Amiloides/toxicidade , Animais , Apoptose/efeitos dos fármacos , Butirilcolinesterase/metabolismo , Catalase/metabolismo , Células Cultivadas , Inibidores da Colinesterase/uso terapêutico , Modelos Animais de Doenças , Flavinas/química , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Antagonistas Muscarínicos/toxicidade , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fragmentos de Peptídeos/toxicidade , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Escopolamina/toxicidade
15.
J Enzyme Inhib Med Chem ; 31(5): 704-13, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26133356

RESUMO

The aim of this research work was to investigate a series of novel 5,6-diaryl-1,2,4-triazines (3a-3q) containing 3-morpholinoethylamine side chain, and to address their antiplatelet activity by in vitro, ex vivo and in vivo methods. All compounds were synthesized by environment benign route and their structures were unambiguously confirmed by spectral data. Compounds (3l) and (3m) were confirmed by their single crystal X-ray structures. Out of all the synthesized compounds, 10 were found to be more potent in vitro than aspirin; six of them were found to be prominent in ex vivo assays and one compound (3d) was found to have the most promising antithrombotic profile in vivo. Moreover, compound (3d) demonstrated less ulcerogenicity in rats as compared to aspirin. The selectivity of the most promising compound (3d) for COX-1 and COX-2 enzymes was determined with the help of molecular docking studies and the results were correlated with the biological activity.


Assuntos
Desenho de Fármacos , Molsidomina/análogos & derivados , Agregação Plaquetária/efeitos dos fármacos , Triazinas/química , Triazinas/farmacologia , Animais , Plaquetas/efeitos dos fármacos , Feminino , Fibrinolíticos/síntese química , Fibrinolíticos/química , Fibrinolíticos/farmacologia , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Molsidomina/química , Molsidomina/farmacologia , Adesividade Plaquetária/efeitos dos fármacos , Ratos , Ratos Wistar , Relação Estrutura-Atividade , Triazinas/síntese química
16.
Mol Divers ; 19(4): 965-74, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26183841

RESUMO

Aurora kinases are sub-divided into Aurora A, Aurora B, and Aurora C kinases that are considered as prospective targets for a new class of anticancer drugs. In this work, a 4-D-QSAR model using an LQTA-QSAR approach with previously reported 31 derivatives of benzo[e]pyrimido[5,4 -b][1,4]diazepin -6(11H)-one as potent Aurora kinase A inhibitors has been created. Instead of single conformation, the conformational ensemble profile generated for each ligand by using trajectories and topology information retrieved from molecular dynamics simulations from GROMACS package were aligned and used for the calculation of intermolecular interaction energies at each grid point. The descriptors generated on the basis of these Coulomb and Lennard-Jones potentials as independent variables were used to perform a PLS analysis using biological activity as dependent variable. A good predictive model was generated with nine field descriptors and five latent variables. The model showed [Formula: see text]; [Formula: see text] and [Formula: see text]. This model was further validated systematically by using different validation parameters. This 4D-QSAR model gave valuable information to recognize features essential to adapt and develop novel potential Aurora kinase inhibitors.


Assuntos
Aurora Quinase A/antagonistas & inibidores , Pirimidinonas/química , Pirimidinonas/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Aurora Quinase A/química , Conformação Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Relação Quantitativa Estrutura-Atividade
17.
Bioorg Chem ; 61: 7-12, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26042530

RESUMO

This article describes discovery of a novel and new class of cholinesterase inhibitors as potential therapeutics for Alzheimer's disease. A series of novel isoalloxazine derivatives were synthesized and biologically evaluated for their potential inhibitory outcome for both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). These compounds exhibited high activity against both the enzymes AChE as well as BuChE. Of the synthesized compounds, the most potent isoalloxazine derivatives (7m and 7q) showed IC50 values of 4.72 µM and 5.22 µM respectively against AChE; and, 6.98 µM and 5.29 µM respectively against BuChE. These two compounds were further evaluated for their anti-aggregatory activity for ß-amyloid (Aß) in presence and absence of AChE by performing Thioflavin-T (ThT) assay and Congo red (CR) binding assay. In order to evaluate cytotoxic profile of these two potential compounds, cell viability assay of SH-SY5Y human neuroblastoma cells was performed. Further, to understand the binding behavior of these two compounds with AChE and BuChE enzymes, docking studies have been reported.


Assuntos
Inibidores da Colinesterase/síntese química , Flavinas/química , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Sítios de Ligação , Butirilcolinesterase/química , Butirilcolinesterase/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Inibidores da Colinesterase/uso terapêutico , Inibidores da Colinesterase/toxicidade , Avaliação Pré-Clínica de Medicamentos , Flavinas/uso terapêutico , Flavinas/toxicidade , Humanos , Simulação de Acoplamento Molecular , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
18.
Mol Divers ; 19(4): 653-67, 2015 11.
Artigo em Inglês | MEDLINE | ID: mdl-25916735

RESUMO

The benzazepine ring system has offered interesting CNS-active medicinal agents. Taking this privileged structure as the basic scaffold, [Formula: see text] and/or [Formula: see text]-alkylated benzazepin-2-one derivatives and their reduced analogs have been prepared as potential [Formula: see text] receptor agonists. The selective alkylation at the [Formula: see text] and/or [Formula: see text] positions of this seven-membered lactam ring is here reported for the first time under different reaction conditions. The synthesized compounds were evaluated for their biological profile as potential [Formula: see text] agonists using a classic pharmacological approach. Three derivatives (15, 17, and 20) have shown promising [Formula: see text] agonistic activity which can be further optimized as anti-obesity agents for the treatment of male sexual dysfunction. Further, a homology model for [Formula: see text] receptor was generated using MODELLER, and ligand-receptor interactions for these potential molecules were studied.


Assuntos
Benzazepinas/síntese química , Pênis/efeitos dos fármacos , Antagonistas da Serotonina/síntese química , Animais , Benzazepinas/química , Benzazepinas/farmacologia , Masculino , Modelos Moleculares , Estrutura Molecular , Ereção Peniana , Ratos , Ratos Sprague-Dawley , Antagonistas da Serotonina/química , Homologia Estrutural de Proteína
19.
Mol Neurobiol ; 52(1): 638-52, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25257697

RESUMO

It has been reported in the literature that cholinesterase inhibitors provide protection in Alzheimer's disease (AD). Recent reports have implicated triazine derivatives as cholinesterase inhibitors. These findings led us to investigate anti-cholinestrase property of some novel triazine derivatives synthesized in this laboratory. In vitro cholinesterase inhibition assay was performed using Ellman method. The potent compounds screened out from in vitro assay were further evaluated using scopolamine-induced amnesic mice model. Further, in vitro reactive oxygen species (ROS) scavenging and anti-apoptotic property of the potent compounds were demonstrated against Aß1-42-induced neurotoxicity in rat hippocampal cells. Their neuroprotective role was assessed using Aß1-42-induced Alzheimer's-like phenotype in rats. Further, the role of compounds on the activation of the Wnt/ß-catenin pathway was studied. The results showed that the chosen compounds are having protective effect in Alzheimer's-like condition; the ex vivo results advocated their anti-cholinestrase and anti-oxidant activities. Treatment with TRZ-15 and TRZ-20 showed neuroprotective ability of the compounds as evidenced from the improved cognitive ability in the animals, and decrease in Aß1-42 burden and cytochrome c and cleaved caspase-3 levels in the brain. This study also demonstrates positive involvement of the novel triazine derivatives in the Wnt/ß-catenin pathway. Immunoblot and immunofluorescence data suggested that ratio of pGSK3/GSK3 and ß-catenin got dramatically improved after treatment with TRZ-15 and TRZ-20. TRZ-15 and TRZ-20 showed neuroprotection in scopolamine-induced amnesic mice and Aß1-42-induced Alzheimer's rat model and also activate the Wnt/ß-catenin signaling pathway. These findings conclude that TRZ-15 and TRZ-20 could be a therapeutic approach to treat AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Triazinas/uso terapêutico , Via de Sinalização Wnt/efeitos dos fármacos , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Butirilcolinesterase/química , Butirilcolinesterase/metabolismo , Caspase 3/metabolismo , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Citocromos c/metabolismo , Modelos Animais de Doenças , Quinase 3 da Glicogênio Sintase/metabolismo , Hipocampo/patologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Camundongos , Simulação de Acoplamento Molecular , Degeneração Neural/tratamento farmacológico , Degeneração Neural/patologia , Degeneração Neural/fisiopatologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Escopolamina , Triazinas/química , Triazinas/farmacologia , beta Catenina/metabolismo
20.
Eur J Med Chem ; 79: 298-339, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24747288

RESUMO

Presently, obesity is one of the major health problems in the developed as well as developing countries due to lack of physical work and increasing sedentary life style. Endocannabinoid system (ECS) and especially cannabinoid 1 (CB1) receptor play a key role in energy homeostasis. Food intake and energy storage is enhanced due to the stimulation of ECS hence, inhibition of ECS by blocking CB1 receptors could be a promising approach in the treatment of obesity. Rimonabant, a diaryl pyrazole was the first potent and selective CB1 receptor antagonist that was introduced into the market in 2006 but was withdrawn in 2008 due to its psychiatric side effects. Researchers all over the world are interested to develop peripherally acting potent and selective CB1 receptor antagonists having a better pharmacokinetic profile and therapeutic index. In this development process, pyrazole ring of rimonabant has been replaced by different bioisosteric scaffolds like pyrrole, imidazole, triazole, pyrazoline, pyridine etc. Variations in substituents around the pyrazole ring have also been done. New strategies were also employed for minimizing the psychiatric side effects by making more polar and less lipophilic antagonists/inverse agonists along with neutral antagonists acting peripherally. It has been observed that some of the peripherally acting compounds do not show adverse effects and could be used as potential leads for the further design of selective CB1 receptor antagonists. Chemical modification strategies used for the development of selective CB1 receptor antagonists are discussed here in this review.


Assuntos
Fármacos Antiobesidade/farmacologia , Obesidade/tratamento farmacológico , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/antagonistas & inibidores , Animais , Fármacos Antiobesidade/química , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Estudos Prospectivos , Pirazóis/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA