Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Circ Res ; 134(10): 1330-1347, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38557119

RESUMO

BACKGROUND: Tetraspanin CD151 is highly expressed in endothelia and reinforces cell adhesion, but its role in vascular inflammation remains largely unknown. METHODS: In vitro molecular and cellular biological analyses on genetically modified endothelial cells, in vivo vascular biological analyses on genetically engineered mouse models, and in silico systems biology and bioinformatics analyses on CD151-related events. RESULTS: Endothelial ablation of Cd151 leads to pulmonary and cardiac inflammation, severe sepsis, and perilous COVID-19, and endothelial CD151 becomes downregulated in inflammation. Mechanistically, CD151 restrains endothelial release of proinflammatory molecules for less leukocyte infiltration. At the subcellular level, CD151 determines the integrity of multivesicular bodies/lysosomes and confines the production of exosomes that carry cytokines such as ANGPT2 (angiopoietin-2) and proteases such as cathepsin-D. At the molecular level, CD151 docks VCP (valosin-containing protein)/p97, which controls protein quality via mediating deubiquitination for proteolytic degradation, onto endolysosomes to facilitate VCP/p97 function. At the endolysosome membrane, CD151 links VCP/p97 to (1) IFITM3 (interferon-induced transmembrane protein 3), which regulates multivesicular body functions, to restrain IFITM3-mediated exosomal sorting, and (2) V-ATPase, which dictates endolysosome pH, to support functional assembly of V-ATPase. CONCLUSIONS: Distinct from its canonical function in strengthening cell adhesion at cell surface, CD151 maintains endolysosome function by sustaining VCP/p97-mediated protein unfolding and turnover. By supporting protein quality control and protein degradation, CD151 prevents proteins from (1) buildup in endolysosomes and (2) discharge through exosomes, to limit vascular inflammation. Also, our study conceptualizes that balance between degradation and discharge of proteins in endothelial cells determines vascular information. Thus, the IFITM3/V-ATPase-tetraspanin-VCP/p97 complexes on endolysosome, as a protein quality control and inflammation-inhibitory machinery, could be beneficial for therapeutic intervention against vascular inflammation.


Assuntos
COVID-19 , Endossomos , Lisossomos , Tetraspanina 24 , Animais , Lisossomos/metabolismo , Tetraspanina 24/metabolismo , Tetraspanina 24/genética , Humanos , Camundongos , COVID-19/metabolismo , COVID-19/imunologia , COVID-19/patologia , Endossomos/metabolismo , Camundongos Knockout , Vasculite/metabolismo , Camundongos Endogâmicos C57BL , SARS-CoV-2 , Inflamação/metabolismo , Inflamação/patologia , Sepse/metabolismo
2.
EMBO J ; 42(18): e111807, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37606072

RESUMO

Cilia are important cellular organelles for signaling and motility and are constructed via intraflagellar transport (IFT). RabL2 is a small GTPase that localizes to the basal body of cilia via an interaction with the centriolar protein CEP19 before downstream association with the IFT machinery, which is followed by initiation of IFT. We reconstituted and purified RabL2 with CEP19 or IFT proteins to show that a reconstituted pentameric IFT complex containing IFT81/74 enhances the GTP hydrolysis rate of RabL2. The binding site on IFT81/74 that promotes GTP hydrolysis in RabL2 was mapped to a 70-amino-acid-long coiled-coil region of IFT81/74. We present structural models for RabL2-containing IFT complexes that we validate in vitro and in cellulo and demonstrate that Chlamydomonas IFT81/74 enhances GTP hydrolysis of human RabL2, suggesting an ancient evolutionarily conserved activity. Our results provide an architectural understanding of how RabL2 is incorporated into the IFT complex and a molecular rationale for why RabL2 dissociates from anterograde IFT trains soon after departure from the ciliary base.


Assuntos
Proteínas Ativadoras de GTPase , Transdução de Sinais , Humanos , Proteínas Ativadoras de GTPase/genética , Transporte Biológico , Aminoácidos , Guanosina Trifosfato , Proteínas Musculares , Proteínas do Citoesqueleto
3.
Cell Mol Life Sci ; 80(6): 154, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37204469

RESUMO

Inflammation can impair intestinal barrier, while increased epithelial permeability can lead to inflammation. In this study, we found that the expression of Tspan8, a tetraspanin expressed specifically in epithelial cells, is downregulated in mouse model of ulcerative disease (UC) but correlated with those of cell-cell junction components, such as claudins and E-cadherin, suggesting that Tspan8 supports intestinal epithelial barrier. Tspan8 removal increases intestinal epithelial permeability and upregulates IFN-γ-Stat1 signaling. We also demonstrated that Tspan8 coalesces with lipid rafts and facilitates IFNγ-R1 localization at or near lipid rafts. As IFN-γ induces its receptor undergoing clathrin- or lipid raft-dependent endocytosis and IFN-γR endocytosis plays an important role in Jak-Stat1 signaling, our analysis on IFN-γR endocytosis revealed that Tspan8 silencing impairs lipid raft-mediated but promotes clathrin-mediated endocytosis of IFN-γR1, leading to increased Stat1 signaling. These changes in IFN-γR1 endocytosis upon Tspan8 silencing correlates with fewer lipid raft component GM1 at the cell surface and more clathrin heavy chain in the cells. Our findings indicate that Tspan8 determines the IFN-γR1 endocytosis route, to restrain Stat1 signaling, stabilize intestine epithelium, and subsequently prevent intestine from inflammation. Our finding also implies that Tspan8 is needed for proper endocytosis through lipid rafts.


Assuntos
Mucosa Intestinal , Receptores de Interferon , Tetraspaninas , Animais , Camundongos , Clatrina/metabolismo , Endocitose/fisiologia , Inflamação/metabolismo , Interferons/metabolismo , Mucosa Intestinal/metabolismo , Receptores de Interferon/metabolismo , Tetraspaninas/genética , Tetraspaninas/metabolismo
4.
Methods Cell Biol ; 176: 59-83, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37164543

RESUMO

The primary cilium is an important signaling organelle critical for normal development and tissue homeostasis. Its small dimensions and complexity necessitate advanced imaging approaches to uncover the molecular mechanisms behind its function. Here, we outline how single-molecule fluorescence microscopy can be used for tracking molecular dynamics and interactions and for super-resolution imaging of nanoscale structures in the primary cilium. Specifically, we describe in detail how to capture and quantify the 2D dynamics of individual transmembrane proteins PTCH1 and SMO and how to map the 3D nanoscale distributions of the inversin compartment proteins INVS, ANKS6, and NPHP3. This protocol can, with minor modifications, be adapted for studies of other proteins and cell lines to further elucidate the structure and function of the primary cilium at the molecular level.


Assuntos
Cílios , Doenças Renais Císticas , Humanos , Cílios/metabolismo , Imagem Individual de Molécula , Doenças Renais Císticas/metabolismo , Transdução de Sinais , Linhagem Celular
5.
bioRxiv ; 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36711481

RESUMO

Distal appendages are nine-fold symmetric blade-like structures attached to the distal end of the mother centriole. These structures are critical for formation of the primary cilium, by regulating at least four critical steps: ciliary vesicle recruitment, recruitment and initiation of intraflagellar transport (IFT), and removal of CP110. While specific proteins that localize to the distal appendages have been identified, how exactly each protein functions to achieve the multiple roles of the distal appendages is poorly understood. Here we comprehensively analyze known and newly discovered distal appendage proteins (CEP83, SCLT1, CEP164, TTBK2, FBF1, CEP89, KIZ, ANKRD26, PIDD1, LRRC45, NCS1, C3ORF14) for their precise localization, order of recruitment, and their roles in each step of cilia formation. Using CRISPR-Cas9 knockouts, we show that the order of the recruitment of the distal appendage proteins is highly interconnected and a more complex hierarchy. Our analysis highlights two protein modules, CEP83-SCLT1 and CEP164-TTBK2, as critical for structural assembly of distal appendages. Functional assay revealed that CEP89 selectively functions in RAB34+ ciliary vesicle recruitment, while deletion of the integral components, CEP83-SCLT1-CEP164-TTBK2, severely compromised all four steps of cilium formation. Collectively, our analyses provide a more comprehensive view of the organization and the function of the distal appendage, paving the way for molecular understanding of ciliary assembly.

6.
bioRxiv ; 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36712037

RESUMO

The primary cilium is a microtubule-based organelle that cycles through assembly and disassembly. In many cell types, formation of the cilium is initiated by recruitment of ciliary vesicles to the distal appendage of the mother centriole. However, the distal appendage mechanism that directly captures ciliary vesicles is yet to be identified. In an accompanying paper, we show that the distal appendage protein, CEP89, is important for thef ciliary vesicle recruitment, but not for other steps of cilium formation (Tomoharu Kanie, Love, Fisher, Gustavsson, & Jackson, 2023). The lack of a membrane binding motif in CEP89 suggests that it may indirectly recruit ciliary vesicles via another binding partner. Here, we identify Neuronal Calcium Sensor-1 (NCS1) as a stoichiometric interactor of CEP89. NCS1 localizes to the position between CEP89 and a ciliary vesicle marker, RAB34, at the distal appendage. This localization was completely abolished in CEP89 knockouts, suggesting that CEP89 recruits NCS1 to the distal appendage. Similarly to CEP89 knockouts, ciliary vesicle recruitment as well as subsequent cilium formation was perturbed in NCS1 knockout cells. The ability of NCS1 to recruit the ciliary vesicle is dependent on its myristoylation motif and NCS1 knockout cells expressing myristoylation defective mutant failed to rescue the vesicle recruitment defect despite localizing proper localization to the centriole. In sum, our analysis reveals the first known mechanism for how the distal appendage recruits the ciliary vesicles.

7.
EMBO Rep ; 22(2): e52180, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33511755

RESUMO

Bardet-Biedl syndrome (BBS) is a genetic disorder caused by the dysfunction of the primary cilium. To date, immunological defects in the disease have not been systematically assessed. In this issue, Tsyklauri and colleagues find, through detailed analysis of BBS mutant animals, that B-cell development is altered in mutant mice (Tsyklauri et al, 2021). The authors further report that BBS patients are more susceptible to autoimmune disorders. This study sheds new light on the potential role of primary cilia in controlling immune function in disease.


Assuntos
Doenças Autoimunes , Síndrome de Bardet-Biedl , Animais , Doenças Autoimunes/genética , Síndrome de Bardet-Biedl/genética , Cílios , Hematopoese , Humanos , Camundongos
8.
Nat Commun ; 11(1): 5453, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33116139

RESUMO

The coronavirus SARS-CoV-2 is the causative agent of the ongoing severe acute respiratory disease pandemic COVID-19. Tissue and cellular tropism is one key to understanding the pathogenesis of SARS-CoV-2. We investigate the expression and subcellular localization of the SARS-CoV-2 receptor, angiotensin-converting enzyme 2 (ACE2), within the upper (nasal) and lower (pulmonary) respiratory tracts of human donors using a diverse panel of banked tissues. Here, we report our discovery that the ACE2 receptor protein robustly localizes within the motile cilia of airway epithelial cells, which likely represents the initial or early subcellular site of SARS-CoV-2 viral entry during host respiratory transmission. We further determine whether ciliary ACE2 expression in the upper airway is influenced by patient demographics, clinical characteristics, comorbidities, or medication use, and show the first mechanistic evidence that the use of angiotensin-converting enzyme inhibitors (ACEI) or angiotensin II receptor blockers (ARBs) does not increase susceptibility to SARS-CoV-2 infection through enhancing the expression of ciliary ACE2 receptor. These findings are crucial to our understanding of the transmission of SARS-CoV-2 for prevention and control of this virulent pathogen.


Assuntos
Antagonistas de Receptores de Angiotensina/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Infecções por Coronavirus/patologia , Expressão Gênica/efeitos dos fármacos , Peptidil Dipeptidase A/genética , Pneumonia Viral/patologia , Sistema Respiratório/patologia , Fatores Etários , Enzima de Conversão de Angiotensina 2 , COVID-19 , Cílios/metabolismo , Infecções por Coronavirus/virologia , Células Endoteliais , Células Caliciformes/metabolismo , Humanos , Pulmão/patologia , Pandemias , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/virologia , Sistema Respiratório/metabolismo , Sistema Respiratório/virologia , Fatores Sexuais , Sinusite/metabolismo , Fumar
9.
medRxiv ; 2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32511516

RESUMO

We investigated the expression and subcellular localization of the SARS-CoV-2 receptor, angiotensin-converting enzyme 2 (ACE2), within the upper (nasal) and lower (pulmonary) respiratory tracts of healthy human donors. We detected ACE2 protein expression within the cilia organelle of ciliated airway epithelial cells, which likely represents the initial or early subcellular site of SARS-CoV-2 viral entry during respiratory transmission. We further determined whether ACE2 expression in the cilia of upper respiratory cells was influenced by patient demographics, clinical characteristics, co-morbidities, or medication use, and found no evidence that the use of angiotensin-converting enzyme inhibitors (ACEI) or angiotensin II receptor blockers (ARBs) increases ACE2 protein expression.

10.
Bio Protoc ; 8(7)2018 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-29951569

RESUMO

GTPases are molecular switches that cycle between the inactive GDP-bound state and the active GTP-bound state. GTPases exchange nucleotides either by its intrinsic nucleotide exchange or by interaction with guanine nucleotide exchange factors (GEFs). Monitoring the nucleotide exchange in vitro, together with reconstitution of direct interactions with regulatory proteins, provides key insights into how a GTPase is activated. In this protocol, we describe core methods to monitor nucleotide exchange using fluorescent N-Methylanthraniloyl (MANT)-guanine nucleotide.

11.
Dev Cell ; 42(1): 22-36.e12, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28625565

RESUMO

Highly conserved intraflagellar transport (IFT) protein complexes direct both the assembly of primary cilia and the trafficking of signaling molecules. IFT complexes initially accumulate at the base of the cilium and periodically enter the cilium, suggesting an as-yet-unidentified mechanism that triggers ciliary entry of IFT complexes. Using affinity-purification and mass spectrometry of interactors of the centrosomal and ciliopathy protein, CEP19, we identify CEP350, FOP, and the RABL2B GTPase as proteins organizing the first known mechanism directing ciliary entry of IFT complexes. We discover that CEP19 is recruited to the ciliary base by the centriolar CEP350/FOP complex and then specifically captures GTP-bound RABL2B, which is activated via its intrinsic nucleotide exchange. Activated RABL2B then captures and releases its single effector, the intraflagellar transport B holocomplex, from the large pool of pre-docked IFT-B complexes, and thus initiates ciliary entry of IFT.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cílios/metabolismo , Flagelos/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Centríolos/metabolismo , Ciliopatias , Técnicas de Inativação de Genes , Guanosina Trifosfato/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nucleotídeos/metabolismo , Fenótipo , Ligação Proteica , Estabilidade Proteica , Transporte Proteico , Reprodutibilidade dos Testes , Proteínas rab de Ligação ao GTP/deficiência
12.
Biochem Biophys Res Commun ; 427(2): 285-92, 2012 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-23000166

RESUMO

Timely exit of cells from the cell cycle is essential for proper cell differentiation during embryogenesis. Cyclin-dependent kinase (CDK) inhibitors (CKIs) of the Cip/Kip family (p21, p27, and p57) are negative regulators of cell cycle progression and are thought to be essential for development. However, the extent of functional redundancy among Cip/Kip family members has remained largely unknown. We have now generated mice that lack all three Cip/Kip CKIs (TKO mice) and compared them with those lacking each possible pair of these proteins (DKO mice). We found that the TKO embryos develop normally until midgestation but die around embryonic day (E) 13.5, slightly earlier than p27/p57 DKO embryos. The TKO embryos manifested morphological abnormalities as well as increased rates of cell proliferation and apoptosis in the placenta and lens that were essentially indistinguishable from those of p27/p57 DKO mice. Unexpectedly, the proliferation rate and cell cycle profile of mouse embryonic fibroblasts (MEFs) lacking all three Cip/Kip CKIs did not differ substantially from those of control MEFs. The abundance and kinase activity of CDK2 were markedly increased, whereas CDK4 activity and cyclin D1 abundance were decreased, in both p27/p57 DKO and TKO MEFs during progression from G(0) to S phase compared with those in control MEFs. The extents of the increase in CDK2 activity and the decrease in CDK4 activity and cyclin D1 abundance were greater in TKO MEFs than in p27/p57 DKO MEFs. These results suggest that p27 and p57 play an essential role in mouse development after midgestation, and that p21 plays only an auxiliary role in normal development (although it is thought to be a key player in the response to DNA damage).


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p57/genética , Embrião de Mamíferos/anormalidades , Animais , Ciclo Celular/genética , Feminino , Técnicas de Inativação de Genes , Cristalino/anormalidades , Camundongos , Camundongos Knockout , Placenta/anormalidades , Gravidez
13.
Mol Cell Biol ; 32(3): 590-605, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22124152

RESUMO

D-type cyclins play a pivotal role in G(1)-S progression of the cell cycle, and their expression is frequently deregulated in cancer. Cyclin D1 has a half-life of only ~30 min as a result of its ubiquitylation and proteasomal degradation, with various F-box proteins, including Fbxo4, Fbxw8, Skp2, and Fbxo31, having been found to contribute to its ubiquitylation. We have now generated Fbxo4-deficient mice and found no abnormalities in these animals. Cyclin D1 accumulation was thus not observed in Fbxo4(-/-) mouse tissues. The half-life of cyclin D1 in mouse embryonic fibroblasts (MEFs) prepared from Fbxo4(-/-), Fbxw8(-/-), and Fbxo4(-/-); Fbxw8(-/-) mice also did not differ from that in wild-type MEFs. Additional depletion of Skp2 and Fbxo31 in Fbxo4(-/-); Fbxw8(-/-) MEFs by RNA interference did not affect cyclin D1 stability. Although Fbxo31 depletion in MEFs increased cyclin D1 abundance, this effect appeared attributable to upregulation of cyclin D1 mRNA. Furthermore, abrogation of the function of the Skp1-Cul1-F-box protein (SCF) complex or the anaphase-promoting complex/cyclosome (APC/C) complexes did not alter the half-life of cyclin D1, whereas cyclin D1 degradation was dependent largely on proteasome activity. Our genetic analyses thus do not support a role for any of the four F-box proteins examined in cyclin D1 degradation during normal cell cycle progression. They suggest the existence of other ubiquitin ligases that target cyclin D1 for proteolysis.


Assuntos
Ciclina D1/metabolismo , Proteínas F-Box/genética , Ciclossomo-Complexo Promotor de Anáfase , Animais , Ciclo Celular , Proteínas Culina/metabolismo , Feminino , Fibroblastos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Proteólise , Interferência de RNA , Proteínas Quinases Associadas a Fase S/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo
14.
Cell Stem Cell ; 9(3): 262-71, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21885021

RESUMO

Quiescence is required for the maintenance of hematopoietic stem cells (HSCs). Members of the Cip/Kip family of cyclin-dependent kinase (CDK) inhibitors (p21, p27, p57) have been implicated in HSC quiescence, but loss of p21 or p27 in mice affects HSC quiescence or functionality only under conditions of stress. Although p57 is the most abundant family member in quiescent HSCs, its role has remained uncharacterized. Here we show a severe defect in the self-renewal capacity of p57-deficient HSCs and a reduction of the proportion of the cells in G(0) phase. Additional ablation of p21 in a p57-null background resulted in a further decrease in the colony-forming activity of HSCs. Moreover, the HSC abnormalities of p57-deficient mice were corrected by knocking in the p27 gene at the p57 locus. Our results therefore suggest that, among Cip/Kip family CDK inhibitors, p57 plays a predominant role in the quiescence and maintenance of adult HSCs.


Assuntos
Células-Tronco Adultas/metabolismo , Sobrevivência Celular , Senescência Celular , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Adultas/patologia , Animais , Processos de Crescimento Celular/genética , Sobrevivência Celular/genética , Senescência Celular/genética , Ensaio de Unidades Formadoras de Colônias , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p57/genética , Técnicas de Introdução de Genes , Hematopoese/genética , Células-Tronco Hematopoéticas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA