Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 51(1): 283, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38324135

RESUMO

BACKGROUND: Eleusine coracana (L.) Gaertn is a crucial C4 species renowned for its stress robustness and nutritional significance. Because of its adaptability traits, finger millet (ragi) is a storehouse of critical genomic resources for crop improvement. However, more knowledge about this crop's molecular responses to heat stress needs to be gained. METHODS AND RESULTS: In the present study, a comparative RNA sequencing analysis was done in the leaf tissue of the finger millet, between the heat-sensitive (KJNS-46) and heat-tolerant (PES-110) cultivars of Ragi, in response to high temperatures. On average, each sample generated about 24 million reads. Interestingly, a comparison of transcriptomic profiling identified 684 transcripts which were significantly differentially expressed genes (DEGs) examined between the heat-stressed samples of both genotypes. The heat-induced change in the transcriptome was confirmed by qRT-PCR using a set of randomly selected genes. Pathway analysis and functional annotation analysis revealed the activation of various genes involved in response to stress specifically heat, oxidation-reduction process, water deprivation, and changes in heat shock protein (HSP) and transcription factors, calcium signaling, and kinase signaling. The basal regulatory genes, such as bZIP, were involved in response to heat stress, indicating that heat stress activates genes involved in housekeeping or related to basal regulatory processes. A substantial percentage of the DEGs belonged to proteins of unknown functions (PUFs), i.e., not yet characterized. CONCLUSION: These findings highlight the importance of candidate genes, such as HSPs and pathways that can confer tolerance towards heat stress in ragi. These results will provide valuable information to improve the heat tolerance in heat-susceptible agronomically important varieties of ragi and other crops.


Assuntos
Eleusine , Termotolerância , Genótipo , Perfilação da Expressão Gênica , Proteínas de Choque Térmico
2.
Plant Physiol Biochem ; 121: 128-139, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29102901

RESUMO

Kharchia Local, a wheat (Triticum aestivum) cultivar, is native to the saline-sodic soils of Pali district, Rajasthan, India and well known for its salinity stress tolerance. In the present study, we performed transcriptome sequencing to compare genome wide differential expression pattern between flag leaves of salinity stressed (15 EC) and control plants at anthesis stage. The 63.9 million paired end raw reads were assembled into 74,106 unigenes, of which, 3197 unigenes were found to be differentially expressed. Functional annotation analysis revealed the upregulation of genes associated with various biological processes including signal transduction, phytohormones signaling, osmoregulation, flavonoid biosynthesis, ion transport and ROS homeostasis. Expression pattern of fourteen differentially expressed genes was validated using qRT-PCR and was found to be consistent with the results of the transcriptome sequencing. Present study is the primary report on transcriptome profiling of Kharchia Local flag leaf under long-term salinity stress at anthesis stage. In conclusion, the data generated in this study can improve our knowledge in understanding the molecular mechanism of salinity stress tolerance. It will also serve as a valuable genomic resource in wheat breeding programs.


Assuntos
Regulação da Expressão Gênica de Plantas/fisiologia , Pressão Osmótica/fisiologia , Salinidade , Transcriptoma/fisiologia , Triticum , Perfilação da Expressão Gênica , Triticum/genética , Triticum/metabolismo
3.
Sci Rep ; 6: 27752, 2016 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-27293111

RESUMO

Kharchia Local wheat variety is an Indian salt tolerant land race known for its tolerance to salinity. However, there is a lack of detailed information regarding molecular mechanism imparting tolerance to high salinity in this bread wheat. In the present study, differential root transcriptome analysis identifying salt stress responsive gene networks and functional annotation under salt stress in Kharchia Local was performed. A total of 453,882 reads were obtained after quality filtering, using Roche 454-GS FLX Titanium sequencing technology. From these reads 22,241 ESTs were generated out of which, 17,911 unigenes were obtained. A total of 14,898 unigenes were annotated against nr protein database. Seventy seven transcription factors families in 826 unigenes and 11,002 SSRs in 6,939 unigenes were identified. Kyoto Encyclopedia of Genes and Genomes database identified 310 metabolic pathways. The expression pattern of few selected genes was compared during the time course of salt stress treatment between salt-tolerant (Kharchia Local) and susceptible (HD2687). The transcriptome data is the first report, which offers an insight into the mechanisms and genes involved in salt tolerance. This information can be used to improve salt tolerance in elite wheat cultivars and to develop tolerant germplasm for other cereal crops.


Assuntos
Perfilação da Expressão Gênica/métodos , Tolerância ao Sal , Triticum/genética , Etiquetas de Sequências Expressas , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Anotação de Sequência Molecular , Raízes de Plantas/genética , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA