Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Stem Cell Rev Rep ; 20(6): 1569-1586, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38713406

RESUMO

Although stem/progenitor cell therapy shows potential for myocardial infarction repair, enhancing the therapeutic efficacy could be achieved through additional genetic modifications. HCLS1-associated protein X-1 (HAX1) has been identified as a versatile modulator responsible for cardio-protective signaling, while its role in regulating stem cell survival and functionality remains unknown. In this study, we investigated whether HAX1 can augment the protective potential of Sca1+ cardiac stromal cells (CSCs) for myocardial injury. The overexpression of HAX1 significantly increased cell proliferation and conferred enhanced resistance to hypoxia-induced cell death in CSCs. Mechanistically, HAX1 can interact with Mst1 (a prominent conductor of Hippo signal transduction) and inhibit its kinase activity for protein phosphorylation. This inhibition led to enhanced nuclear translocation of Yes-associated protein (YAP) and activation of downstream therapeutic-related genes. Notably, HAX1 overexpression significantly increased the pro-angiogenic potential of CSCs, as demonstrated by elevated expression of vascular endothelial growth factors. Importantly, implantation of HAX1-overexpressing CSCs promoted neovascularization, protected against functional deterioration, and ameliorated cardiac fibrosis in ischemic mouse hearts. In conclusion, HAX1 emerges as a valuable and efficient inducer for enhancing the effectiveness of cardiac stem or progenitor cell therapeutics.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proliferação de Células , Via de Sinalização Hippo , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Proteínas de Sinalização YAP , Animais , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Camundongos , Proteínas de Sinalização YAP/metabolismo , Proteínas de Sinalização YAP/genética , Proliferação de Células/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Humanos , Infarto do Miocárdio/terapia , Infarto do Miocárdio/patologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/genética , Neovascularização Fisiológica , Células-Tronco/metabolismo , Células-Tronco/citologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Transplante de Células-Tronco , Fator de Crescimento de Hepatócito/metabolismo , Fator de Crescimento de Hepatócito/genética , Proteínas Proto-Oncogênicas
2.
bioRxiv ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38746225

RESUMO

During heart failure, gene and protein expression profiles undergo extensive compensatory and pathological remodeling. We previously observed that fast skeletal myosin binding protein-C (fMyBP-C) is upregulated in diseased mouse hearts. While fMyBP-C shares significant homology with its cardiac paralog, cardiac myosin binding protein-C (cMyBP-C), there are key differences that may affect cardiac function. However, it is unknown if the expression of fMyBP-C expression in the heart is a pathological or compensatory response. We aim to elucidate the cardiac consequence of either increased or knockout of fMyBP-C expression. To determine the sufficiency of fMyBP-C to cause cardiac dysfunction, we generated cardiac-specific fMyBP-C over-expression mice. These mice were further crossed into a cMyBP-C null model to assess the effect of fMyBP-C in the heart in the complete absence of cMyBP-C. Finally, fMyBP-C null mice underwent transverse aortic constriction (TAC) to define the requirement of fMyBP-C during heart failure development. We confirmed the upregulation of fMyBP-C in several models of cardiac disease, including the use of lineage tracing. Low levels of fMyBP-C caused mild cardiac remodeling and sarcomere dysfunction. Exclusive expression of fMyBP-C in a heart failure model further exacerbated cardiac pathology. Following 8 weeks of TAC, fMyBP-C null mice demonstrated greater protection against heart failure development. Mechanistically, this may be due to the differential regulation of the myosin super-relaxed state. These findings suggest that the elevated expression of fMyBP-C in diseased hearts is a pathological response. Targeted therapies to prevent upregulation of fMyBP-C may prove beneficial in the treatment of heart failure. Significance Statement: Recently, the sarcomere - the machinery that controls heart and muscle contraction - has emerged as a central target for development of cardiac therapeutics. However, there remains much to understand about how the sarcomere is modified in response to disease. We recently discovered that a protein normally expressed in skeletal muscle, is present in the heart in certain settings of heart disease. How this skeletal muscle protein affects the function of the heart remained unknown. Using genetically engineered mouse models to modulate expression of this skeletal muscle protein, we determined that expression of this skeletal muscle protein in the heart negatively affects cardiac performance. Importantly, deletion of this protein from the heart could improve heart function suggesting a possible therapeutic avenue.

3.
J Biol Chem ; 299(12): 105426, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37926281

RESUMO

S-palmitoylation is a reversible lipid modification catalyzed by 23 S-acyltransferases with a conserved zinc finger aspartate-histidine-histidine-cysteine (zDHHC) domain that facilitates targeting of proteins to specific intracellular membranes. Here we performed a gain-of-function screen in the mouse and identified the Golgi-localized enzymes zDHHC3 and zDHHC7 as regulators of cardiac hypertrophy. Cardiomyocyte-specific transgenic mice overexpressing zDHHC3 show cardiac disease, and S-acyl proteomics identified the small GTPase Rac1 as a novel substrate of zDHHC3. Notably, cardiomyopathy and congestive heart failure in zDHHC3 transgenic mice is preceded by enhanced Rac1 S-palmitoylation, membrane localization, activity, downstream hypertrophic signaling, and concomitant induction of all Rho family small GTPases whereas mice overexpressing an enzymatically dead zDHHC3 mutant show no discernible effect. However, loss of Rac1 or other identified zDHHC3 targets Gαq/11 or galectin-1 does not diminish zDHHC3-induced cardiomyopathy, suggesting multiple effectors and pathways promoting decompensation with sustained zDHHC3 activity. Genetic deletion of Zdhhc3 in combination with Zdhhc7 reduces cardiac hypertrophy during the early response to pressure overload stimulation but not over longer time periods. Indeed, cardiac hypertrophy in response to 2 weeks of angiotensin-II infusion is not diminished by Zdhhc3/7 deletion, again suggesting other S-acyltransferases or signaling mechanisms compensate to promote hypertrophic signaling. Taken together, these data indicate that the activity of zDHHC3 and zDHHC7 at the cardiomyocyte Golgi promote Rac1 signaling and maladaptive cardiac remodeling, but redundant signaling effectors compensate to maintain cardiac hypertrophy with sustained pathological stimulation in the absence of zDHHC3/7.


Assuntos
Cardiomiopatias , Miócitos Cardíacos , Animais , Camundongos , Aciltransferases/genética , Aciltransferases/metabolismo , Cardiomegalia/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Histidina/metabolismo , Lipoilação , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo
4.
Commun Biol ; 6(1): 1200, 2023 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-38001239

RESUMO

The source and roles of fibroblasts and T-cells during maladaptive remodeling and myocardial fibrosis in the setting of pulmonary arterial hypertension (PAH) have been long debated. We demonstrate, using single-cell mass cytometry, a subpopulation of endogenous human cardiac fibroblasts expressing increased levels of CD4, a helper T-cell marker, in addition to myofibroblast markers distributed in human fibrotic RV tissue, interstitial and perivascular lesions in SUGEN/Hypoxia (SuHx) rats, and fibroblasts labeled with pdgfrα CreERt2/+ in R26R-tdTomato mice. Recombinant IL-1ß increases IL-1R, CCR2 receptor expression, modifies the secretome, and differentiates cardiac fibroblasts to form CD68-positive cell clusters. IL-1ß also activates stemness markers, such as NANOG and SOX2, and genes involved in dedifferentiation, lymphoid cell function and metabolic reprogramming. IL-1ß induction of lineage traced primary mouse cardiac fibroblasts causes these cells to lose their fibroblast identity and acquire an immune phenotype. Our results identify IL-1ß induced immune-competency in human cardiac fibroblasts and suggest that fibroblast secretome modulation may constitute a therapeutic approach to PAH and other diseases typified by inflammation and fibrotic remodeling.


Assuntos
Coração , Hipertensão Arterial Pulmonar , Animais , Humanos , Camundongos , Ratos , Fibroblastos/metabolismo , Fibrose , Miofibroblastos/metabolismo
5.
bioRxiv ; 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37131709

RESUMO

Ischemia-reperfusion (I/R) injury is a common occurrence in various surgical procedures used to treat heart diseases. However, the role of insulin-like growth factor 2 receptor (IGF2R) during the process of myocardial I/R remains unclear. Therefore, this study aims to investigate the expression, distribution, and functionality of IGF2R in various I/R-associated models (such as reoxygenation, revascularization, and heart transplant). Loss-of-function studies (including myocardial conditional knockout and CRISPR interference) were performed to clarify the role of IGF2R in I/R injuries. Following hypoxia, IGF2R expression increased, but this effect was reversed upon restoration of oxygen levels. Loss of myocardial IGF2R was found to enhance the cardiac contractile functions, and reduced cell infiltration or cardiac fibrosis of I/R mouse models compared to the genotype control. CRISPR-inhibition of IGF2R decreased cell apoptotic death under hypoxia. RNA sequencing analysis indicated that myocardial IGF2R played a critical role in regulating the inflammatory response, innate immune response, and apoptotic process following I/R. Integrated analysis of the mRNA profiling, pulldown assays, and mass spectrometry identified granulocyte-specific factors as potential targets of myocardial IGF2R in the injured heart. In conclusion, myocardial IGF2R emerges as a promising therapeutic target to ameliorate inflammation or fibrosis following I/R injuries.

6.
Exp Mol Med ; 55(3): 502-509, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36854776

RESUMO

Skeletal muscle, a highly complex muscle type in the eukaryotic system, is characterized by different muscle subtypes and functions associated with specific myosin isoforms. As a result, skeletal muscle is the target of numerous diseases, including distal arthrogryposes (DAs). Clinically, DAs are a distinct disorder characterized by variation in the presence of contractures in two or more distal limb joints without neurological issues. DAs are inherited, and up to 40% of patients with this condition have mutations in genes that encode sarcomeric protein, including myosin heavy chains, troponins, and tropomyosin, as well as myosin binding protein-C (MYBPC). Our research group and others are actively studying the specific role of MYBPC in skeletal muscles. The MYBPC family of proteins plays a critical role in the contraction of striated muscles. More specifically, three paralogs of the MYBPC gene exist, and these are named after their predominant expression in slow-skeletal, fast-skeletal, and cardiac muscle as sMyBP-C, fMyBP-C, and cMyBP-C, respectively, and encoded by the MYBPC1, MYBPC2, and MYBPC3 genes, respectively. Although the physiology of various types of skeletal muscle diseases is well defined, the molecular mechanism underlying the pathological regulation of DAs remains to be elucidated. In this review article, we aim to highlight recent discoveries involving the role of skeletal muscle-specific sMyBP-C and fMyBP-C as well as their expression profile, localization in the sarcomere, and potential role(s) in regulating muscle contractility. Thus, this review provides an overall summary of MYBPC skeletal paralogs, their potential roles in skeletal muscle function, and future research directions.


Assuntos
Músculo Esquelético , Doenças Musculares , Humanos , Músculo Esquelético/metabolismo , Doenças Musculares/genética , Doenças Musculares/metabolismo , Miocárdio/metabolismo , Miosinas/genética , Miosinas/metabolismo , Mutação
7.
bioRxiv ; 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36711986

RESUMO

Myocardial ischemia/reperfusion (I/R) injury and the resulting cardiac remodeling is a common cause of heart failure. The RNA binding protein Human Antigen R (HuR) has been previously shown to reduce cardiac remodeling following both I/R and cardiac pressure overload, but the full extent of the HuR-dependent mechanisms within cells of the myocardium have yet to be elucidated. In this study, we applied a novel small molecule inhibitor of HuR to define the functional role of HuR in the acute response to I/R injury and gain a better understanding of the HuR-dependent mechanisms during post-ischemic myocardial remodeling. Our results show an early (two hours post-I/R) increase in HuR activity that is necessary for early inflammatory gene expression by cardiomyocytes in response to I/R. Surprisingly, despite the reductions in early inflammatory gene expression at two hours post-I/R, HuR inhibition has no effect on initial infarct size at 24-hours post-I/R. However, in agreement with previously published work, we do see a reduction in pathological remodeling and preserved cardiac function at two weeks post-I/R upon HuR inhibition. RNA-sequencing analysis of neonatal rat ventricular myocytes (NRVMs) at two hours post-LPS treatment to model damage associated molecular pattern (DAMP)-mediated activation of toll like receptors (TLRs) demonstrates a broad HuR-dependent regulation of pro-inflammatory chemokine and cytokine gene expression in cardiomyocytes. We show that conditioned media from NRVMs pre-treated with HuR inhibitor loses the ability to induce inflammatory gene expression in bone marrow derived macrophages (BMDMs) compared to NRVMs treated with LPS alone. Functionally, HuR inhibition in NRVMs also reduces their ability to induce endocrine migration of peripheral blood monocytes in vitro and reduces post-ischemic macrophage infiltration to the heart in vivo. In summary, these results suggest a HuR-dependent expression of pro-inflammatory gene expression by cardiomyocytes that leads to subsequent monocyte recruitment and macrophage activation in the post-ischemic myocardium.

8.
J Mol Cell Cardiol ; 174: 38-46, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36372279

RESUMO

Cardiac fibrosis is regulated by the activation and phenotypic switching of quiescent cardiac fibroblasts to active myofibroblasts, which have extracellular matrix (ECM) remodeling and contractile functions which play a central role in cardiac remodeling in response to injury. Here, we show that expression and activity of the RNA binding protein HuR is increased in cardiac fibroblasts upon transformation to an active myofibroblast. Pharmacological inhibition of HuR significantly blunts the TGFß-dependent increase in ECM remodeling genes, total collagen secretion, in vitro scratch closure, and collagen gel contraction in isolated primary cardiac fibroblasts, suggesting a suppression of TGFß-induced myofibroblast activation upon HuR inhibition. We identified twenty-four mRNA transcripts that were enriched for HuR binding following TGFß treatment via photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP). Eleven of these HuR-bound mRNAs also showed significant co-expression correlation with HuR, αSMA, and periostin in primary fibroblasts isolated from the ischemic-zone of infarcted mouse hearts. Of these, WNT1-inducible signaling pathway protein-1 (Wisp1; Ccn4), was the most significantly associated with HuR expression in fibroblasts. Accordingly, we found Wisp1 expression to be increased in cardiac fibroblasts isolated from the ischemic-zone of mouse hearts following ischemia/reperfusion, and confirmed Wisp1 expression to be HuR-dependent in isolated fibroblasts. Finally, addition of exogenous recombinant Wisp1 partially rescued myofibroblast-induced collagen gel contraction following HuR inhibition, demonstrating that HuR-dependent Wisp1 expression plays a functional role in HuR-dependent MF activity downstream of TGFß. In conclusion, HuR activity is necessary for the functional activation of primary cardiac fibroblasts in response to TGFß, in part through post-transcriptional regulation of Wisp1.


Assuntos
Proteínas de Sinalização Intercelular CCN , Proteína Semelhante a ELAV 1 , Miofibroblastos , Fator de Crescimento Transformador beta , Animais , Camundongos , Colágeno/metabolismo , Fibroblastos/metabolismo , Coração , Miofibroblastos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteína Semelhante a ELAV 1/metabolismo , Proteínas de Sinalização Intercelular CCN/metabolismo
9.
Mol Ther ; 30(1): 54-74, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34678511

RESUMO

Fibroblasts can be reprogrammed into cardiovascular progenitor cells (CPCs) using transgenic approaches, although the underlying mechanism remains unclear. We determined whether activation of endogenous genes such as Gata4, Nkx2.5, and Tbx5 can rapidly establish autoregulatory loops and initiate CPC generation in adult extracardiac fibroblasts using a CRISPR activation system. The induced fibroblasts (>80%) showed phenotypic changes as indicated by an Nkx2.5 cardiac enhancer reporter. The progenitor characteristics were confirmed by colony formation and expression of cardiovascular genes. Cardiac sphere induction segregated the early and late reprogrammed cells that can generate functional cardiomyocytes and vascular cells in vitro. Therefore, they were termed CRISPR-induced CPCs (ciCPCs). Transcriptomic analysis showed that cell cycle and heart development pathways were important to accelerate CPC formation during the early reprogramming stage. The CRISPR system opened the silenced chromatin locus, thereby allowing transcriptional factors to access their own promoters and eventually forming a positive feedback loop. The regenerative potential of ciCPCs was assessed after implantation in mouse myocardial infarction models. The engrafted ciCPCs differentiated into cardiovascular cells in vivo but also significantly improved contractile function and scar formation. In conclusion, multiplex gene activation was sufficient to drive CPC reprogramming, providing a new cell source for regenerative therapeutics.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Infarto do Miocárdio , Animais , Diferenciação Celular/genética , Reprogramação Celular/genética , Fibroblastos/metabolismo , Camundongos , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/terapia , Miócitos Cardíacos/metabolismo , Células-Tronco/metabolismo
10.
Int J Mol Sci ; 22(23)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34884909

RESUMO

The limited ability of mammalian adult cardiomyocytes to proliferate following an injury to the heart, such as myocardial infarction, is a major factor that results in adverse fibrotic and myocardial remodeling that ultimately leads to heart failure. The continued high degree of heart failure-associated morbidity and lethality requires the special attention of researchers worldwide to develop efficient therapeutics for cardiac repair. Recently, various strategies and approaches have been developed and tested to extrinsically induce regeneration and restoration of the myocardium after cardiac injury have yielded encouraging results. Nevertheless, these interventions still lack adequate success to be used for clinical interventions. This review highlights and discusses both cell-based and cell-free therapeutic approaches as well as current advancements, major limitations, and future perspectives towards developing an efficient therapeutic method for cardiac repair.


Assuntos
Infarto do Miocárdio/patologia , Comunicação Parácrina , Animais , Terapia Baseada em Transplante de Células e Tecidos , Exossomos/metabolismo , Exossomos/transplante , Humanos , Infarto do Miocárdio/terapia , Comunicação Parácrina/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos
11.
Am J Physiol Heart Circ Physiol ; 321(1): H228-H241, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34018851

RESUMO

Adipose tissue homeostasis plays a central role in cardiovascular physiology, and the presence of thermogenically active brown adipose tissue (BAT) has recently been associated with cardiometabolic health. We have previously shown that adipose tissue-specific deletion of HuR (Adipo-HuR-/-) reduces BAT-mediated adaptive thermogenesis, and the goal of this work was to identify the cardiovascular impacts of Adipo-HuR-/-. We found that Adipo-HuR-/- mice exhibit a hypercontractile phenotype that is accompanied by increased left ventricle wall thickness and hypertrophic gene expression. Furthermore, hearts from Adipo-HuR-/- mice display increased fibrosis via picrosirius red staining and periostin expression. To identify underlying mechanisms, we applied both RNA-seq and weighted gene coexpression network analysis (WGCNA) across both cardiac and adipose tissue to define HuR-dependent changes in gene expression as well as significant relationships between adipose tissue gene expression and cardiac fibrosis. RNA-seq results demonstrated a significant increase in proinflammatory gene expression in both cardiac and subcutaneous white adipose tissue (scWAT) from Adipo-HuR-/- mice that is accompanied by an increase in serum levels of both TNF-α and IL-6. In addition to inflammation-related genes, WGCNA identified a significant enrichment in extracellular vesicle-mediated transport and exosome-associated genes in scWAT, whose expression most significantly associated with the degree of cardiac fibrosis observed in Adipo-HuR-/- mice, implicating these processes as a likely adipose-to-cardiac paracrine mechanism. These results are significant in that they demonstrate the spontaneous onset of cardiovascular pathology in an adipose tissue-specific gene deletion model and contribute to our understanding of how disruptions in adipose tissue homeostasis may mediate cardiovascular disease.NEW & NOTEWORTHY The presence of functional brown adipose tissue in humans is known to be associated with cardiovascular health. Here, we show that adipocyte-specific deletion of the RNA binding protein HuR, which we have previously shown to reduce BAT-mediated thermogenesis, is sufficient to mediate a spontaneous development of cardiac hypertrophy and fibrosis. These results may have implications on the mechanisms by which BAT function and adipose tissue homeostasis directly mediate cardiovascular disease.


Assuntos
Adipócitos/metabolismo , Cardiomegalia/genética , Proteína Semelhante a ELAV 1/genética , Miocárdio/metabolismo , Adipócitos/patologia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/patologia , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Animais , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Proteína Semelhante a ELAV 1/metabolismo , Fibrose/genética , Fibrose/metabolismo , Fibrose/patologia , Camundongos , Camundongos Knockout , Miocárdio/patologia
12.
Exp Biol Med (Maywood) ; 246(7): 851-860, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33327780

RESUMO

Heart transplantation continues to be the gold standard clinical intervention to treat patients with end-stage heart failure. However, there are major complications associated with this surgical procedure that reduce the survival prognosis of heart transplant patients, including allograft rejection, malignancies, infections, and other complications that arise from the use of broad-spectrum immunosuppression drugs. Recent studies have demonstrated the use of mesenchymal stem cells (MSCs) against allotransplantation rejection in both in vitro and in vivo settings due to their immunomodulatory properties. Therefore, utilization of MSCs provides new and exciting strategies to improve heart transplantation and potentially reduce the use of broad-spectrum immunosuppression drugs while alleviating allograft rejection. In this review, we will discuss the current research on the mechanisms of cardiac allograft rejection, the physiological and immunological characteristics of MSCs, the effects of MSCs on the immune system, and immunomodulation of heart transplantation by MSCs.


Assuntos
Aloenxertos/imunologia , Rejeição de Enxerto/imunologia , Transplante de Coração , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Animais , Transplante de Coração/métodos , Humanos , Terapia de Imunossupressão/métodos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/imunologia
13.
J Vis Exp ; (164)2020 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-33104067

RESUMO

Ex vivo culture of the adult mammalian cardiomyocytes (CMs) presents the most relevant experimental system for the in vitro study of cardiac biology. Adult mammalian CMs are terminally differentiated cells with minimal proliferative capacity. The post-mitotic state of adult CMs not only restricts cardiomyocyte cell cycle progression but also limits the efficient culture of CMs. Moreover, the long-term culture of adult CMs is necessary for many studies, such as CM proliferation and analysis of gene expression. The mouse and the rat are the two most preferred laboratory animals to be used for cardiomyocyte isolation. While the long-term culture of rat CMs is possible, adult mouse CMs are susceptible to death and cannot be cultured more than five days under normal conditions. Therefore, there is a critical need to optimize the cell isolation and long-term culture protocol for adult murine CMs. With this modified protocol, it is possible to successfully isolate and culture both adult mouse and rat CMs for more than 20 days. Moreover, the siRNA transfection efficiency of isolated CM is significantly increased compared to previous reports. For adult mouse CM isolation, the Langendorff perfusion method is utilized with an optimal enzyme solution and sufficient time for complete extracellular matrix dissociation. In order to obtain pure ventricular CMs, both atria were dissected and discarded before proceeding with the disassociation and plating. Cells were dispersed on a laminin coated plate, which allowed for efficient and rapid attachment. CMs were allowed to settle for 4-6 h before siRNA transfection. Culture media was refreshed every 24 h for 20 days, and subsequently, CMs were fixed and stained for cardiac-specific markers such as Troponin and markers of cell cycle such as KI67.


Assuntos
Envelhecimento/fisiologia , Miócitos Cardíacos/citologia , Transfecção/métodos , Animais , Desdiferenciação Celular , Proliferação de Células , Separação Celular , Células Cultivadas , Meios de Cultura/farmacologia , Camundongos , Miocárdio/citologia , Ratos , Suspensões , Fatores de Tempo
14.
J Clin Med ; 9(2)2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-32102389

RESUMO

Pericytes are cells that reside adjacent to microvasculature and regulate vascular function. Pericytes gained great interest in the field of wound healing and regenerative medicine due to their multipotential fate and ability to enhance angiogenesis. In burn wounds, scarring and scar contractures are the major pathologic feature and cause loss of mobility. The present study investigated the influence of burn wound environment on pericytes during wound healing. Pericytes isolated from normal skin and tangentially excised burn eschar tissues were analyzed for differences in gene and protein expression using RNA-seq., immunocytochemistry, and ELISA analyses. RNA-seq identified 443 differentially expressed genes between normal- and burn eschar-derived pericytes. Whereas, comparing normal skin pericytes to normal skin fibroblasts identified 1021 distinct genes and comparing burn eschar pericytes to normal skin fibroblasts identified 2449 differential genes. Altogether, forkhead box E1 (FOXE1), a transcription factor, was identified as a unique marker for skin pericytes. Interestingly, FOXE1 levels were significantly elevated in burn eschar pericytes compared to normal. Additionally, burn wound pericytes showed increased expression of profibrotic genes periostin, fibronectin, and endosialin and a gain in contractile function, suggesting a contribution to scarring and fibrosis. Our findings suggest that the burn wound environment promotes pericytes to differentiate into a myofibroblast-like phenotype promoting scar formation and fibrosis.

15.
JCI Insight ; 4(15): e128722, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31393098

RESUMO

Collagen production in the adult heart is thought to be regulated by the fibroblast, although cardiomyocytes and endothelial cells also express multiple collagen mRNAs. Molecular chaperones are required for procollagen biosynthesis, including heat shock protein 47 (Hsp47). To determine the cell types critically involved in cardiac injury­induced fibrosis theHsp47 gene was deleted in cardiomyocytes, endothelial cells, or myofibroblasts. Deletion ofHsp47 from cardiomyocytes during embryonic development or adult stages, or deletion from adult endothelial cells, did not affect cardiac fibrosis after pressure overload injury. However, myofibroblast-specific ablation of Hsp47; blocked fibrosis and deposition of collagens type I, III, and V following pressure overload as well as significantly reduced cardiac hypertrophy. Fibroblast-specific Hsp47-deleted mice showed lethality after myocardial infarction injury, with ineffective scar formation and ventricular wall rupture. Similarly, only myofibroblast-specific deletion of Hsp47reduced fibrosis and disease in skeletal muscle in a mouse model of muscular dystrophy. Mechanistically, deletion of Hsp47 from myofibroblasts reduced mRNA expression of fibrillar collagens and attenuated their proliferation in the heart without affecting paracrine secretory activity of these cells. The results show that myofibroblasts are the primary mediators of tissue fibrosis and scar formation in the injured adult heart, which unexpectedly affects cardiomyocyte hypertrophy.


Assuntos
Colágeno/metabolismo , Proteínas de Choque Térmico HSP47/metabolismo , Ventrículos do Coração/patologia , Distrofia Muscular do Cíngulo dos Membros/patologia , Infarto do Miocárdio/patologia , Miofibroblastos/patologia , Animais , Linhagem Celular , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Fibrose , Perfilação da Expressão Gênica , Proteínas de Choque Térmico HSP47/genética , Ventrículos do Coração/citologia , Humanos , Masculino , Camundongos , Músculo Esquelético/citologia , Distrofia Muscular do Cíngulo dos Membros/genética , Infarto do Miocárdio/etiologia , Miócitos Cardíacos/metabolismo , Miofibroblastos/metabolismo , Cultura Primária de Células , Ratos , Sarcoglicanas/genética , Remodelação Ventricular
16.
J Am Heart Assoc ; 8(15): e012089, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31315484

RESUMO

Background Myocardial infarction results in a large-scale cardiomyocyte loss and heart failure due to subsequent pathological remodeling. Whereas zebrafish and neonatal mice have evident cardiomyocyte expansion following injury, adult mammalian cardiomyocytes are principally nonproliferative. Despite historical presumptions of stem cell-mediated cardiac regeneration, numerous recent studies using advanced lineage-tracing methods demonstrated that the only source of cardiomyocyte renewal originates from the extant myocardium; thus, the augmented proliferation of preexisting adult cardiomyocytes remains a leading therapeutic approach toward cardiac regeneration. In the present study we investigate the significance of suppressing cell cycle inhibitors Rb1 and Meis2 to promote adult cardiomyocyte reentry to the cell cycle. Methods and Results In vitro experiments with small interfering RNA-mediated simultaneous knockdown of Rb1 and Meis2 in both adult rat cardiomyocytes, isolated from 12-week-old Fischer rats, and human induced pluripotent stem cell-derived cardiomyocytes showed a significant increase in cell number, a decrease in cell size, and an increase in mononucleated cardiomyocytes. In vivo, a hydrogel-based delivery method for small interfering RNA-mediated silencing of Rb1 and Meis2 is utilized following myocardial infarction. Immunofluorescent imaging analysis revealed a significant increase in proliferation markers 5-ethynyl-2'-deoxyuridine, PH3, KI67, and Aurora B in adult cardiomyocytes as well as improved cell survivability with the additional benefit of enhanced peri-infarct angiogenesis. Together, this intervention resulted in a reduced infarct size and improved cardiac function post-myocardial infarction. Conclusions Silencing of senescence-inducing pathways in adult cardiomyocytes via inhibition of Rb1 and Meis2 results in marked cardiomyocyte proliferation and increased protection of cardiac function in the setting of ischemic injury.


Assuntos
Ciclo Celular/fisiologia , Proteínas de Homeodomínio/genética , Infarto do Miocárdio , Miócitos Cardíacos/citologia , Proteínas de Ligação a Retinoblastoma/genética , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/genética , Fatores Etários , Animais , Proteínas de Homeodomínio/fisiologia , Humanos , Masculino , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Ratos , Ratos Endogâmicos F344 , Proteínas de Ligação a Retinoblastoma/fisiologia , Fatores de Transcrição/fisiologia , Ubiquitina-Proteína Ligases/fisiologia
17.
J Clin Invest ; 128(5): 2127-2143, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29664017

RESUMO

Fibroblasts are a dynamic cell type that achieve selective differentiated states to mediate acute wound healing and long-term tissue remodeling with scarring. With myocardial infarction injury, cardiomyocytes are replaced by secreted extracellular matrix proteins produced by proliferating and differentiating fibroblasts. Here, we employed 3 different mouse lineage-tracing models and stage-specific gene profiling to phenotypically analyze and classify resident cardiac fibroblast dynamics during myocardial infarction injury and stable scar formation. Fibroblasts were activated and highly proliferative, reaching a maximum rate within 2 to 4 days after infarction injury, at which point they expanded 3.5-fold and were maintained long term. By 3 to 7 days, these cells differentiated into myofibroblasts that secreted abundant extracellular matrix proteins and expressed smooth muscle α-actin to structurally support the necrotic area. By 7 to 10 days, myofibroblasts lost proliferative ability and smooth muscle α-actin expression as the collagen-containing extracellular matrix and scar fully matured. However, these same lineage-traced initial fibroblasts persisted within the scar, achieving a new molecular and stable differentiated state referred to as a matrifibrocyte, which was also observed in the scars of human hearts. These cells express common and unique extracellular matrix and tendon genes that are more specialized to support the mature scar.


Assuntos
Diferenciação Celular , Cicatriz/metabolismo , Matriz Extracelular/metabolismo , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Miofibroblastos/metabolismo , Animais , Cicatriz/patologia , Matriz Extracelular/patologia , Proteínas da Matriz Extracelular/metabolismo , Feminino , Humanos , Masculino , Camundongos , Mioblastos Cardíacos/metabolismo , Mioblastos Cardíacos/patologia , Infarto do Miocárdio/patologia , Miocárdio/patologia , Miofibroblastos/patologia
18.
Circulation ; 138(10): 1012-1024, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-29666070

RESUMO

BACKGROUND: Although c-Kit+ adult progenitor cells were initially reported to produce new cardiomyocytes in the heart, recent genetic evidence suggests that such events are exceedingly rare. However, to determine if these rare events represent true de novo cardiomyocyte formation, we deleted the necessary cardiogenic transcription factors Gata4 and Gata6 from c-Kit-expressing cardiac progenitor cells. METHODS: Kit allele-dependent lineage tracing and fusion analysis were performed in mice following simultaneous Gata4 and Gata6 cell type-specific deletion to examine rates of putative de novo cardiomyocyte formation from c-Kit+ cells. Bone marrow transplantation experiments were used to define the contribution of Kit allele-derived hematopoietic cells versus Kit lineage-dependent cells endogenous to the heart in contributing to apparent de novo lineage-traced cardiomyocytes. A Tie2CreERT2 transgene was also used to examine the global impact of Gata4 deletion on the mature cardiac endothelial cell network, which was further evaluated with select angiogenesis assays. RESULTS: Deletion of Gata4 in Kit lineage-derived endothelial cells or in total endothelial cells using the Tie2CreERT2 transgene, but not from bone morrow cells, resulted in profound endothelial cell expansion, defective endothelial cell differentiation, leukocyte infiltration into the heart, and a dramatic increase in Kit allele-dependent lineage-traced cardiomyocytes. However, this increase in labeled cardiomyocytes was an artefact of greater leukocyte-cardiomyocyte cellular fusion because of defective endothelial cell differentiation in the absence of Gata4. CONCLUSIONS: Past identification of presumed de novo cardiomyocyte formation in the heart from c-Kit+ cells using Kit allele lineage tracing appears to be an artefact of labeled leukocyte fusion with cardiomyocytes. Deletion of Gata4 from c-Kit+ endothelial progenitor cells or adult endothelial cells negatively impacted angiogenesis and capillary network integrity.


Assuntos
Linhagem da Célula , Proliferação de Células , Células Endoteliais/metabolismo , Fator de Transcrição GATA4/metabolismo , Miócitos Cardíacos/metabolismo , Neovascularização Fisiológica , Proteínas Proto-Oncogênicas c-kit/metabolismo , Regeneração , Animais , Transplante de Medula Óssea , Fusão Celular , Rastreamento de Células/métodos , Células Cultivadas , Feminino , Fator de Transcrição GATA4/deficiência , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA6/genética , Fator de Transcrição GATA6/metabolismo , Leucócitos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais
20.
Nat Commun ; 8(1): 1875, 2017 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-29192139

RESUMO

Regulation of mRNA splicing, processing and stability is increasingly recognized as a critical control point in dynamically altering gene expression during stress or disease. Very little is understood of this process in heart failure. Here, we show that BEX1 is a heart failure-induced gene functioning as an mRNA-associated protein that enhances expression of a subset of cardiac disease-promoting genes. Modeling the increase in BEX1 that occurs in disease, cardiac-specific BEX1 transgenic mice show worse cardiac disease with stress stimulation, whereas Bex1 gene-deleted mice are protected from heart failure-promoting insults. Proteomic and interactive screening assays show that BEX1 is part of a large ribonucleoprotein processing complex involved in regulating proinflammatory mRNA expression in the heart. Specifically, induction of BEX1 augments the stability and expression of AU-rich element containing mRNAs typically found within proinflammatory genes. Thus, BEX1 functions as an mRNA-dependent effector that augments pathology-promoting gene expression during heart failure.


Assuntos
Cardiomegalia/genética , Cardiomiopatias/genética , Regulação da Expressão Gênica , Insuficiência Cardíaca/genética , Proteínas do Tecido Nervoso/genética , RNA Mensageiro/metabolismo , Animais , Cardiomegalia/metabolismo , Cardiomiopatias/metabolismo , Estudos de Casos e Controles , Insuficiência Cardíaca/metabolismo , Humanos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Mapeamento de Interação de Proteínas , Splicing de RNA , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA