Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
IUCrJ ; 9(Pt 4): 449-467, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35844480

RESUMO

Multicentre two-electron (mc/2e or 'pancake bonding') bonding between 7,7,8,8-tetra-cyano-quinodi-methane (TCNQ) radical anions was studied on its 14 novel salts with planar organic cations. The formal charges of the TCNQδ- moieties are -1/2 and -2/3, and they form mc/2e bonded dimers, trimers and tetramers which are further stacked into extended arrays. Multicentre bonding within these oligomers is characterized by short interplanar separations of 2.9-3.2 Å; distances between the oligomers are larger, typically >3.3 Å. The stacks are laterally connected by C-H⋯N hydrogen bonding, forming 2D arrays. The nature of mc/2e bonding is characterized by structural, magnetic and electrical data. The compounds are found to be semiconductors, and high conductivity [10-2 (Ω cm)-1] correlates with short interplanar distances between pancake-bonded oligomers.

2.
Inorg Chem ; 59(24): 18078-18089, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33289548

RESUMO

The heterodimetallic [CuFe] compounds [CuII4(terpy)4Cl5][FeIII(C2O4)3]·10H2O (1;terpy = 2,2':6',2''-terpyridine), [CuII2(H2O)2(terpy)2(C2O4)][CuIIFeIII(CH3OH)(terpy)(C2O4)3]2 (2), and {[Cu2IIFeIII(H2O)(terpy)2(C2O4)7/2]·6H2O}n (3) were obtained using building block approach, from reaction of aqueous solution of [Fe(C2O4)3]3- and a methanol solution containing Cu2+ ions and terpy by the layering technique. Interestingly, by changing only the anion of the starting salt of copper(II), Cu(NO3)2·3H2O instead of CuCl2·2H2O, an unexpected change in the type of bridge, oxalate (2 and 3) versus chloride (1), was achieved, thus affecting the overall structural architecture. Two polymorphs of 3D coordination polymer [CuIIFeII2(H2O)(terpy)(C2O4)3]n (4), crystallizing in the triclinic (a) and monoclinic (b) space groups, were formed hydrothermally, depending on whether CuCl2·2H2O or Cu(NO3)2·3H2O was added to the water, besides K3[Fe(C2O4)3]·3H2O and terpy, respectively. Under hydrothermal conditions iron(III) from initial building block is reduced to the divalent state, creating 2D honeycomb [FeII2(C2O4)3]n2n- layers, which are bridged by [Cu(H2O)(terpy)]2+ cations. Compounds were investigated by single-crystal X-ray diffraction, IR, and impedance spectroscopies, magnetization measurements, and density functional theory (DFT) calculations. In compounds 1 and 2, 0D magnetism is observed, with 1 having a ground-state spin of 1 due to different interactions through chloride bridges of Cu2+ ions in tetramer [CuII4(terpy)4Cl5]3+ and 2 showing strong antiferromagnetic coupling of Cu2+ ions mediated by oxalate ligand in [CuII2(H2O)2(terpy)2(C2O4)]2+ and weak ones between Cu2+ and Fe3+ ions through oxalate bridge in [CuIIFeIII(CH3OH)(terpy)(C2O4)3]-. Polymer 4 exhibits antiferromagnetic phase transition at 25 K: The [FeII2(C2O4)3]n2n- layers are antiferromagnetically ordered, and a small amount of interlayer interaction is transferred through [Cu(H2O)(terpy)]2+ cations via Oox-Cu-Oox bridges. Additionally, compounds 1 and 2 are electrical insulators, while 4a and 4b show proton conductivity.

3.
Materials (Basel) ; 13(23)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255776

RESUMO

One-dimensional (1D) oxalate-bridged homometallic {[Mn(bpy)(C2O4)]·1.5H2O}n (1) (bpy = 2,2'-bipyridine) and heterodimetallic {[CrCu3(bpy)3(CH3OH)(H2O)(C2O4)4][Cu(bpy)Cr(C2O4)3]·CH2Cl2·CH3OH·H2O}n (2) coordination polymers, as well as the three-dimensional (3D) heterotrimetallic {[CaCr2Cu2(phen)4(C2O4)6]·4CH3CN·2H2O}n (3) (1,10-phenanthroline) network, have been synthesized by a building block approach using a layering technique, and characterized by single-crystal X-ray diffraction, infrared (IR) and impedance spectroscopies and magnetization measurements. During the crystallization process partial decomposition of the tris(oxalate)chromate(III) happened and 1D polymers 1 and 2 were formed. The antiferromagnetic interactions between the manganese(II) ions was mediated by oxalate ligands in the chain [Mn(bpy)(C2O4)]n of 1, with intra-chain super-exchange interaction ? = (-3.134 ± 0.004) K; magnetic interaction between neighbouring chains is negligible making this system closer than other known Mn-chains to the ideal 1D Heisenberg antiferromagnet. Compound 2 comprises a 1D coordination anion [Cu(bpy)Cr(C2O4)3]nn- (Cr2-Cu4) with alternating [Cr(C2O4)3]3- and [Cu(bpy)]2+ units mutually bridged through the oxalate group. Another chain (Cr1-Cu3) is similar, but involves a homodinuclear unit [Cu(bpy)(H2O)(µ-C2O4)Cu(bpy)(CH3OH)]2+ (Cu1-Cu2) coordinated as a pendant group to a terminal oxalate oxygen. Magnetic measurements showed that the Cu1-Cu2 cationic unit is a strongly coupled antiferromagnetic dimer, independent from the other magnetic ions within ferromagnetic chains Cr1-Cu3 and Cr2-Cu4. A 3D polymer {[CaCr2Cu2(phen)4(C2O4)6]·4CH3CN·2H2O}n (3) comprising three different metal centers (Ca2+, Cr3+ and Cu2+) oxalate-bridged, contains Ca2+ atoms as nodes connected with four Cr3+ atoms through oxalate ligands. The network thus formed can be reduced to an underlying graph of diamondoid (dia) or (66) topology. Magnetization of 3 shows the ferromagnetic oxalate-bridged dimers [CuIICrIII], whose mutual interaction could possibly originate through the spin polarization of Ca2+ orbitals. Compounds 1 and 3 exhibit lower electrical conductivity at room temperature (RT) in comparison to compound 2.

4.
Dalton Trans ; 48(22): 7891-7898, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31080984

RESUMO

Three heterometallic one-dimensional (1D) coordination polymers {A[CrCu2(bpy)2(C2O4)4]·H2O}n [A = K+ (1) and NH4+ (2); bpy = 2,2'-bipyridine] and [(Cr2O7)Cu2(C2O4)(phen)2]n (3; phen = 1,10-phenanthroline) with uncommon topology have been synthesized using a building block approach and characterized by single-crystal X-ray diffraction, IR and impedance spectroscopies, magnetization measurements, and DFT calculations. Due to the partial decomposition of the building block [Cr(C2O4)3]3-, all three compounds contain oxalate-bridged [Cu2(L)2(µ-C2O4)]2+ units [L = bpy (1 and 2) and phen (3)]. In compounds 1 and 2 these cations are mutually connected through oxalate groups from [Cr(C2O4)3]3-, thus forming ladder-like topologies. Unusually, three different bridging modes of the oxalate ligand are observed in these chains. In compound 3 copper(ii) ions from cationic units are bridged through the oxygen atoms of Cr2O72- anions in a novel ladder-like mode. Very strong antiferromagnetic coupling observed in all three compounds, determined from the magnetization measurements and confirmed by DFT calculations (J = -343, -371 and -340 cm-1 for 1, 2 and 3, respectively), appears between two copper(ii) ions interacting through the oxalate bridge.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA