Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Malar J ; 19(1): 367, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33054833

RESUMO

BACKGROUND: Reticulocyte binding protein-like homologs (RHs) are currently being evaluated as anti-erythrocytic stage vaccine targets against Plasmodium falciparum malaria. Present study explores the possible evolutionary drivers shaping the genetic organization of Pfrhs in Indian parasite population. It simultaneously evaluates a putative gain-of-function variant of PfRH5, a keystone member of PfRH family. METHODS: Receptor binding regions of Pfrh1, Pfrh2a/b, Pfrh4 and whole Pfrh5 were amplified using blood samples of P. falciparum malaria patients from Chhattisgarh and West Bengal and sequenced. Assembled sequences were analysed using MEGA7 and DnaSPv6. Binding affinities of recombinant PfRH5 proteins with basigin (BSG) were compared using in silico (CHARMM and AUTODOCK) and in vitro (Circular dichroism, fluorescence spectroscopy and isothermal titration calorimetry) methods. RESULTS: Pfrh1 (0.5), Pfrh2a/b (0.875), Pfrh4 (0.667) and Pfrh5 (0.778) sequence changes corresponded to low frequency (< 0.05) variants which resulted in an overall negative Tajima's D. Since mismatch distribution of none of the Pfrh loci corroborated with the model of demographic expansion, a possible role of natural selection formulating Pfrh sequence diversity was investigated. Among the 5 members, Pfrh5 displayed very high dN/dS (5.7) ratio. Nevertheless, the model of selective sweep due to presence of any advantageous substitutions could not be invoked as polymorphic nonsynonymous sites (17/18) for Pfrh5 exceeded significantly over the divergent (62/86) ones (p = 0.0436). The majority of extant PfRH5 sequences (52/83) differed from the reference Pf3D7 allele by a single amino acid mismatch (C203Y). This non-conservative alteration was predicted to lower the total interaction energy of that PfRH5variant with BSG, compared to PfRH53D7. Biophysical evidences validated the proposition that PfRH5variant formed a more stable complex with BSG. Thermodynamic association constant for interaction of BSG with PfRH5variant was also found to be higher (Kavariant = 3.63E6 ± 2.02E6 M-1 and Ka3D7 = 1.31E6 ± 1.21E6 M-1). CONCLUSIONS: Together, the study indicates that the genetic architecture of Pfrhs is principally shaped by purifying selection. The most abundant and ubiquitous PfRH5 variant harbouring 203Y, exhibits a greater affinity for BSG compared to PfRH53D7 possessing 203C allele. The study underscores the importance of selecting the functional allele that best represents circulating strains in natural parasite populations as vaccine targets.


Assuntos
Evolução Molecular , Variação Genética , Plasmodium falciparum/genética , Proteínas de Protozoários/química , Seleção Genética , Índia , Ligantes
2.
Infect Genet Evol ; 57: 64-74, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29128519

RESUMO

Erythrocyte binding antigens 175 (EBA-175) and 140 (EBA-140) play key roles in erythrocyte invasion by binding to glycophorin A (GPA) and C (GPC) respectively in human malaria. Since antigenic variation in malaria endemic region is a major barrier to development of effective vaccine, we explore the nature and pattern of sequence diversity of these two vaccine candidates in Kolkata, India. Population genetic parameters based on parasite sequences representing region II of Pfeba-175 and Pfeba-140 genes were estimated using DnaSP V.5.10 and MEGA version 6.0. A novel molecular docking approach was implemented to assess the binding affinities of Kolkata Pfeba-175 variants with GPA. P. falciparum Kolkata isolates experienced a recent population expansion as documented by negative Tajima's D, Fu & Li's statistics, unimodal mismatch distribution and star-like median-joining network for both loci. Positive selection seemed to play a major role in shaping the diversity of Pfeba-175 (dN/dS=2.45, and McDonald-Kreitman P-value=0.04) with successive accumulation of Q584K/E, E592A and R664S deriving high frequency haplotypes designated here as F2KH3 and F2KH1. In silico molecular docking demonstrated that polypeptides encoded by F2KH1 and F2KH3 were capable of engaging the parasite ligand into energetically favorable interaction with GPA. Our data demonstrated emergence of Pfeba-175 sequences harboring selectively advantageous nonsynonymous substitutions on Pf3D7 sequence background in the Kolkata parasite isolates. A contrasting pattern of Pf3D7-centric expansion of parasite sequences was noted for Pfeba-140. Together, this study provides a firm genetic and biological support favoring a dominant role of EBA-175 in erythrocyte invasion.


Assuntos
Antígenos de Protozoários/genética , Variação Genética , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Seleção Genética , Antígenos de Protozoários/química , Antígenos de Protozoários/imunologia , Glicoforinas/química , Glicoforinas/metabolismo , Humanos , Modelos Moleculares , Filogenia , Plasmodium falciparum/imunologia , Reação em Cadeia da Polimerase , Conformação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/imunologia , Análise de Sequência de DNA
3.
PLoS One ; 7(10): e46441, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23071570

RESUMO

Genetic variations in toll-like receptors and cytokine genes of the innate immune pathways have been implicated in controlling parasite growth and the pathogenesis of Plasmodium falciparum mediated malaria. We previously published genetic association of TLR4 non-synonymous and TNF-α promoter polymorphisms with P.falciparum blood infection level and here we extend the study considerably by (i) investigating genetic dependence of parasite-load on interleukin-12B polymorphisms, (ii) reconstructing gene-gene interactions among candidate TLRs and cytokine loci, (iii) exploring genetic and functional impact of epistatic models and (iv) providing mechanistic insights into functionality of disease-associated regulatory polymorphisms. Our data revealed that carriage of AA (P = 0.0001) and AC (P = 0.01) genotypes of IL12B 3'UTR polymorphism was associated with a significant increase of mean log-parasitemia relative to rare homozygous genotype CC. Presence of IL12B+1188 polymorphism in five of six multifactor models reinforced its strong genetic impact on malaria phenotype. Elevation of genetic risk in two-component models compared to the corresponding single locus and reduction of IL12B (2.2 fold) and lymphotoxin-α (1.7 fold) expressions in patients'peripheral-blood-mononuclear-cells under TLR4Thr399Ile risk genotype background substantiated the role of Multifactor Dimensionality Reduction derived models. Marked reduction of promoter activity of TNF-α risk haplotype (C-C-G-G) compared to wild-type haplotype (T-C-G-G) with (84%) and without (78%) LPS stimulation and the loss of binding of transcription factors detected in-silico supported a causal role of TNF-1031. Significantly lower expression of IL12B+1188 AA (5 fold) and AC (9 fold) genotypes compared to CC and under-representation (P = 0.0048) of allele A in transcripts of patients' PBMCs suggested an Allele-Expression-Imbalance. Allele (A+1188C) dependent differential stability (2 fold) of IL12B-transcripts upon actinomycin-D treatment and observed structural modulation (P = 0.013) of RNA-ensemble were the plausible explanations for AEI. In conclusion, our data provides functional support to the hypothesis that de-regulated receptor-cytokine axis of innate immune pathway influences blood infection level in P. falciparum malaria.


Assuntos
Epistasia Genética , Imunidade Inata/genética , Malária Falciparum/genética , Polimorfismo Genético , Regiões 3' não Traduzidas , Alelos , Linhagem Celular , Haplótipos , Humanos , Subunidade p40 da Interleucina-12/genética , Malária Falciparum/sangue , Malária Falciparum/imunologia , Reação em Cadeia da Polimerase em Tempo Real , Receptor 4 Toll-Like/genética
4.
Infect Genet Evol ; 10(5): 686-96, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20307689

RESUMO

Dysregulated innate immune responses due to inappropriate signaling by Toll-like receptors (TLRs) and aberrant production of pro-inflammatory cytokines are implicated in the immunopathology and disease outcome in Plasmodium falciparum malaria. This study investigates the relationship between polymorphic variability of candidate genes including TLR-2, -4, -9, tumor necrosis factor-alpha and lymphotoxin-alpha and blood infection level in Indian mild malaria patients. Genotyping was carried out by PCR-RFLP and sequencing. Association of parasite load with genotypes was examined using model based and model free approaches. Allele and haplotype based risk assessment for disease severity was performed by stratifying the patients into high and low parasitemic groups on the basis of a threshold value derived by employing a two-component mixture model and expectation-maximization algorithm. The mean parasitemia was significantly increased for variant homozygous genotype (C/C) at TNF-alpha promoter -1031 and major homozygous genotypes encoding Asp/Asp and Thr/Thr at codons 299 and 399, respectively, on TLR4 polypeptide. Individuals harboring combined genotype C/C-Asp/Asp-Thr/Thr on TNF-alpha and TLR4 presented the highest parasite load. The frequencies of variant allele C in TNF-1031 (OR=1.91 with 95% CI=1.24-2.94) and TNF-alpha promoter haplotypes C-C-G-G (OR=1.99 with 95% CI=1.21-3.27) and C-C-G-A (OR=2.96 with 95% CI=1.19-7.37) pertaining to loci TNF-1031/-857/-308/-238 were significantly elevated in the high parasitemic group. On the contrary, the frequencies of variant allele encoding Ile at 399 (OR=0.55 with 95% CI=0.32-0.94) and haplotype corresponding to Gly-Ile (299-399) (OR=0.51 with 95% CI=0.28-0.9) in TLR4 were higher in low parasitemic group. In silico analysis indicate differential binding of transcription factors to TNF-alpha promoter haplotypes and alteration in the surface charge distribution of the TLR4 variant proteins. Our results support a genetic role of TLR4 and TNF-alpha in controlling the blood infection level in mild malaria.


Assuntos
Malária Falciparum , Parasitemia , Plasmodium falciparum/metabolismo , Plasmodium falciparum/patogenicidade , Polimorfismo de Nucleotídeo Único , Receptor 4 Toll-Like/genética , Fator de Necrose Tumoral alfa/genética , Adolescente , Adulto , Alelos , Animais , Feminino , Genótipo , Haplótipos , Interações Hospedeiro-Parasita , Humanos , Linfotoxina-alfa/sangue , Malária Falciparum/sangue , Malária Falciparum/genética , Malária Falciparum/imunologia , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Conformação Proteica , Fatores de Risco , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/química , Receptor Toll-Like 9/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA