Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 14(1): 14405, 2024 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909138

RESUMO

Microglia, brain-resident macrophages, can acquire distinct functional phenotypes, which are supported by differential reprogramming of cell metabolism. These adaptations include remodeling in glycolytic and mitochondrial metabolic fluxes, potentially altering energy substrate availability at the tissue level. This phenomenon may be highly relevant in the brain, where metabolism must be precisely regulated to maintain appropriate neuronal excitability and synaptic transmission. Direct evidence that microglia can impact on neuronal energy metabolism has been widely lacking, however. Combining molecular profiling, electrophysiology, oxygen microsensor recordings and mathematical modeling, we investigated microglia-mediated disturbances in brain energetics during neuroinflammation. Our results suggest that proinflammatory microglia showing enhanced nitric oxide release and decreased CX3CR1 expression transiently increase the tissue lactate/glucose ratio that depends on transcriptional reprogramming in microglia, not in neurons. In this condition, neuronal network activity such as gamma oscillations (30-70 Hz) can be fueled by increased ATP production in mitochondria, which is reflected by elevated oxygen consumption. During dysregulated inflammation, high energy demand and low glucose availability can be boundary conditions for neuronal metabolic fitness as revealed by kinetic modeling of single neuron energetics. Collectively, these findings indicate that metabolic flexibility protects neuronal network function against alterations in local substrate availability during moderate neuroinflammation.


Assuntos
Metabolismo Energético , Glucose , Microglia , Doenças Neuroinflamatórias , Neurônios , Animais , Neurônios/metabolismo , Microglia/metabolismo , Camundongos , Doenças Neuroinflamatórias/metabolismo , Glucose/metabolismo , Mitocôndrias/metabolismo , Óxido Nítrico/metabolismo , Ácido Láctico/metabolismo , Rede Nervosa/metabolismo , Encéfalo/metabolismo , Consumo de Oxigênio , Trifosfato de Adenosina/metabolismo , Inflamação/metabolismo , Masculino , Camundongos Endogâmicos C57BL
3.
J Neurochem ; 168(5): 910-954, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38183680

RESUMO

Although we have learned much about how the brain fuels its functions over the last decades, there remains much still to discover in an organ that is so complex. This article lays out major gaps in our knowledge of interrelationships between brain metabolism and brain function, including biochemical, cellular, and subcellular aspects of functional metabolism and its imaging in adult brain, as well as during development, aging, and disease. The focus is on unknowns in metabolism of major brain substrates and associated transporters, the roles of insulin and of lipid droplets, the emerging role of metabolism in microglia, mysteries about the major brain cofactor and signaling molecule NAD+, as well as unsolved problems underlying brain metabolism in pathologies such as traumatic brain injury, epilepsy, and metabolic downregulation during hibernation. It describes our current level of understanding of these facets of brain energy metabolism as well as a roadmap for future research.


Assuntos
Encéfalo , Metabolismo Energético , Animais , Humanos , Encéfalo/metabolismo
4.
J Neurochem ; 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37309602

RESUMO

Lactate shuttled from the blood circulation, astrocytes, oligodendrocytes or even activated microglia (resident macrophages) to neurons has been hypothesized to represent a major source of pyruvate compared to what is normally produced endogenously by neuronal glucose metabolism. However, the role of lactate oxidation in fueling neuronal signaling associated with complex cortex function, such as perception, motor activity, and memory formation, is widely unclear. This issue has been experimentally addressed using electrophysiology in hippocampal slice preparations (ex vivo) that permit the induction of different neural network activation states by electrical stimulation, optogenetic tools or receptor ligand application. Collectively, these studies suggest that lactate in the absence of glucose (lactate only) impairs gamma (30-70 Hz) and theta-gamma oscillations, which feature high energy demand revealed by the cerebral metabolic rate of oxygen (CMRO2, set to 100%). The impairment comprises oscillation attenuation or moderate neural bursts (excitation-inhibition imbalance). The bursting is suppressed by elevating the glucose fraction in energy substrate supply. By contrast, lactate can retain certain electric stimulus-induced neural population responses and intermittent sharp wave-ripple activity that features lower energy expenditure (CMRO2 of about 65%). Lactate utilization increases the oxygen consumption by about 9% during sharp wave-ripples reflecting enhanced adenosine-5'-triphosphate (ATP) synthesis by oxidative phosphorylation in mitochondria. Moreover, lactate attenuates neurotransmission in glutamatergic pyramidal cells and fast-spiking, γ-aminobutyric acid (GABA)ergic interneurons by reducing neurotransmitter release from presynaptic terminals. By contrast, the generation and propagation of action potentials in the axon is regular. In conclusion, lactate is less effective than glucose and potentially detrimental during neural network rhythms featuring high energetic costs, likely through the lack of some obligatory ATP synthesis by aerobic glycolysis at excitatory and inhibitory synapses. High lactate/glucose ratios might contribute to central fatigue, cognitive impairment, and epileptic seizures partially seen, for instance, during exhaustive physical exercise, hypoglycemia and neuroinflammation.

5.
Trends Neurosci ; 45(12): 913-927, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36283867

RESUMO

Traditionally, lymphocytic interferon γ (IFN-γ) was considered to be a simple 'booster' of proinflammatory responses by microglia (brain-resident macrophages) during bacterial or viral infection. Recent slice culture (in situ) and in vivo studies suggest, however, that IFN-γ has a unique role in microglial activation. Priming by IFN-γ results in proliferation (microgliosis), enhanced synapse elimination, and moderate nitric oxide release sufficient to impair synaptic transmission, gamma rhythm activity, and cognitive functions. Moreover, IFN-γ is pivotal for driving Toll-like receptor (TLR)-activated microglia into neurotoxic phenotypes that induce energetic and oxidative stress, severe network dysfunction, and neuronal death. Pharmacological targeting of activated microglia could be beneficial during elevated IFN-γ levels, blood-brain barrier leakage, and parenchymal T lymphocyte infiltration associated with, for instance, encephalitis, multiple sclerosis, and Alzheimer's disease.


Assuntos
Interferon gama , Microglia , Interferon gama/farmacologia , Citocinas , Óxido Nítrico , Redes Neurais de Computação
6.
J Neurosci ; 42(29): 5782-5802, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35667850

RESUMO

Alzheimer's disease (AD) is histopathologically characterized by Aß plaques and the accumulation of hyperphosphorylated Tau species, the latter also constituting key hallmarks of primary tauopathies. Whereas Aß is produced by amyloidogenic APP processing, APP processing along the competing nonamyloidogenic pathway results in the secretion of neurotrophic and synaptotrophic APPsα. Recently, we demonstrated that APPsα has therapeutic effects in transgenic AD model mice and rescues Aß-dependent impairments. Here, we examined the potential of APPsα to mitigate Tau-induced synaptic deficits in P301S mice (both sexes), a widely used mouse model of tauopathy. Analysis of synaptic plasticity revealed an aberrantly increased LTP in P301S mice that could be normalized by acute application of nanomolar amounts of APPsα to hippocampal slices, indicating a homeostatic function of APPsα on a rapid time scale. Further, AAV-mediated in vivo expression of APPsα restored normal spine density of CA1 neurons even at stages of advanced Tau pathology not only in P301S mice, but also in independent THY-Tau22 mice. Strikingly, when searching for the mechanism underlying aberrantly increased LTP in P301S mice, we identified an early and progressive loss of major GABAergic interneuron subtypes in the hippocampus of P301S mice, which may lead to reduced GABAergic inhibition of principal cells. Interneuron loss was paralleled by deficits in nest building, an innate behavior highly sensitive to hippocampal impairments. Together, our findings indicate that APPsα has therapeutic potential for Tau-mediated synaptic dysfunction and suggest that loss of interneurons leads to disturbed neuronal circuits that compromise synaptic plasticity as well as behavior.SIGNIFICANCE STATEMENT Our findings indicate, for the first time, that APPsα has the potential to rescue Tau-induced spine loss and abnormal synaptic plasticity. Thus, APPsα might have therapeutic potential not only because of its synaptotrophic functions, but also its homeostatic capacity for neuronal network activity. Hence, APPsα is one of the few molecules which has proven therapeutic effects in mice, both for Aß- and Tau-dependent synaptic impairments and might therefore have therapeutic potential for patients suffering from AD or primary tauopathies. Furthermore, we found in P301S mice a pronounced reduction of inhibitory interneurons as the earliest pathologic event preceding the accumulation of hyperphosphorylated Tau species. This loss of interneurons most likely disturbs neuronal circuits that are important for synaptic plasticity and behavior.


Assuntos
Doença de Alzheimer , Tauopatias , Doença de Alzheimer/metabolismo , Animais , Feminino , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Plasticidade Neuronal/fisiologia , Tauopatias/patologia
7.
J Neuroimmunol ; 368: 577881, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35537331

RESUMO

Immunological priming by type II interferon (IFN-γ) is crucial for evoking neurotoxic phenotypes of microglia (tissue-resident macrophages). We report that serial exposure of hippocampal slice cultures to IFN-γ and lipopolysaccharide (Toll-like receptor 4 ligand) induces high release of IL-6, TNF-α and nitric oxide, concomitant loss of electrical network activity (neuronal gamma oscillations) and neurodegeneration. Notably, these effects are still present after 3 days of IFN-γ removal but neither mimicked by IFN-α nor attenuated by anti-inflammatory cytokine, IL-10. Our findings might be relevant for brain diseases featuring elevated IFN-γ levels, such as viral and bacterial infections, multiple sclerosis and Alzheimer's disease.


Assuntos
Interferon gama , Microglia , Hipocampo/metabolismo , Interferon gama/metabolismo , Interferon gama/farmacologia , Interleucina-10 , Lipopolissacarídeos/farmacologia , Microglia/metabolismo , Neurônios/metabolismo , Óxido Nítrico , Fator de Necrose Tumoral alfa/metabolismo
8.
Brain Behav Immun ; 96: 80-91, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34015428

RESUMO

Recognition of pathogen- or damage-associated molecular patterns (PAMPs, DAMPs) by innate Toll-like receptors (TLRs) is central to the activation of microglia (brain macrophages) in many CNS diseases. Notably, TLR-mediated microglial activation is complex and modulated by additional exogenous and endogenous immunological signals. The impact of different microglial reactive phenotypes on electrical activity and neurotransmission is widely unknown, however. We explored the effects of TLR ligands on microglia and neuronal network function in rat organotypic hippocampal slice cultures (in situ), i.e., postnatal cortical tissue lacking adaptive immunity. Single exposure of slice cultures to TLR2 or TLR3 ligands [PGN, poly(I:C)] for 2-3 days induced moderate microglial activation featuring IL-6 and TNF-α release and only mild alterations of fast neuronal gamma band oscillations (30-70 Hz) that are fundamental to higher cognitive functions, such as perception, memory and behavior. Paired exposure to TLR3/TLR2 or TLR3/TLR4 ligands (LPS) induced nitric oxide (NO) release, enhanced TNF-α release, and associated with advanced network dysfunction, including slowing to the beta frequency band (12-30 Hz) and neural bursts (hyperexcitability). Paired exposure to a TLR ligand and the leukocyte cytokine IFN-γ enhanced NO release and associated with severe network dysfunction, albeit sensitive parvalbumin- and somatostatin-positive inhibitory interneurons were preserved. Notably, the neuronal disturbance was prevented by either microglial depletion or pharmacological inhibition of oxidant-producing enzymes, inducible NO synthase (iNOS) and NADPH oxidase. In conclusion, TLR-activated microglia can induce different levels of neuronal network dysfunction, in which severe dysfunction is mainly caused by reactive oxygen and nitrogen species rather than proinflammatory cytokines. Our findings provide a mechanistic insight into microglial activation and functional neuronal network impairment, with relevance to neuroinflammation and neurodegeneration observed in, e.g., meningoencephalitis, multiple sclerosis and Alzheimer's disease.


Assuntos
Microglia , Receptor 2 Toll-Like , Animais , Células Cultivadas , Macrófagos , Neurônios , Ratos , Receptor 3 Toll-Like
9.
Semin Cell Dev Biol ; 112: 137-144, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32807643

RESUMO

Microglia are universal sensors of alterations in CNS physiology. These cells integrate complex molecular signals and undergo comprehensive phenotypical remodeling to adapt inflammatory responses. In the last years, single-cell analyses have revealed that microglia exhibit diverse phenotypes during development, growth and disease. Emerging evidence suggests that such phenotype transitions are mediated by reprogramming of cell metabolism. Indeed, metabolic pathways are distinctively altered in activated microglia and are central nodes controlling microglial responses. Microglial lipid metabolism has been specifically involved in the control of microglial activation and effector functions, such as migration, phagocytosis and inflammatory signaling, and minor disturbances in microglial lipid handling associates with altered brain function in disorders featuring neuroinflammation. In this review, we explore new and relevant aspects of microglial metabolism in health and disease. We give special focus on how different branches of lipid metabolism, such as lipid sensing, synthesis and oxidation, integrate and control essential aspects of microglial biology, and how disturbances in these processes associate with aging and the pathogenesis of, for instance, multiple sclerosis and Alzheimer's disease. Finally, challenges and advances in microglial lipid research are discussed.


Assuntos
Encéfalo/imunologia , Imunidade Inata/genética , Metabolismo dos Lipídeos/imunologia , Doenças Neuroinflamatórias/imunologia , Encéfalo/metabolismo , Humanos , Metabolismo dos Lipídeos/genética , Lipídeos/genética , Lipídeos/imunologia , Microglia/imunologia , Microglia/metabolismo , Doenças Neuroinflamatórias/genética , Doenças Neuroinflamatórias/patologia , Fagocitose/genética
10.
J Neuroinflammation ; 17(1): 235, 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32782006

RESUMO

BACKGROUND: The granulocyte-macrophage colony-stimulating factor (GM-CSF) (or CSF-2) is involved in myeloid cell growth and differentiation, and, possibly, a major mediator of inflammation in body tissues. The role of GM-CSF in the activation of microglia (CNS resident macrophages) and the consequent impacts on neuronal survival, excitability, and synaptic transmission are widely unknown, however. Here, we focused on electrical neuronal network rhythms in the gamma frequency band (30-70 Hz). Gamma oscillations are fundamental to higher brain functions, such as perception, attention, and memory, and they are exquisitely sensitive to metabolic and oxidative stress. METHODS: We explored the effects of chronic GM-CSF exposure (72 h) on microglia in male rat organotypic hippocampal slice cultures (in situ), i.e., postnatal cortex tissue lacking leukocyte invasion (adaptive immunity). We applied extracellular electrophysiological recordings of local field potential, immunohistochemistry, design-based stereology, biochemical analysis, and pharmacological ablation of microglia. RESULTS: GM-CSF triggered substantial proliferation of microglia (microgliosis). By contrast, the release of proinflammatory cytokines (IL-6, TNF-α) and nitric oxide, the hippocampal cytoarchitecture as well as the morphology of parvalbumin-positive inhibitory interneurons were unaffected. Notably, GM-CSF induced concentration-dependent, long-lasting disturbances of gamma oscillations, such as slowing (beta frequency band) and neural burst firing (hyperexcitability), which were not mimicked by the T lymphocyte cytokine IL-17. These disturbances were attenuated by depletion of the microglial cell population with liposome-encapsulated clodronate. In contrast to priming with the cytokine IFN-γ (type II interferon), GM-CSF did not cause inflammatory neurodegeneration when paired with the TLR4 ligand LPS. CONCLUSIONS: GM-CSF has a unique role in the activation of microglia, including the potential to induce neuronal network dysfunction. These immunomodulatory properties might contribute to cognitive impairment and/or epileptic seizure development in disease featuring elevated GM-CSF levels, blood-brain barrier leakage, and/or T cell infiltration.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Hipocampo/efeitos dos fármacos , Interneurônios/efeitos dos fármacos , Microglia/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Hipocampo/metabolismo , Interleucina-6/metabolismo , Interneurônios/metabolismo , Masculino , Microglia/metabolismo , Óxido Nítrico/metabolismo , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo
11.
Nat Rev Drug Discov ; 19(9): 609-633, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32709961

RESUMO

The brain requires a continuous supply of energy in the form of ATP, most of which is produced from glucose by oxidative phosphorylation in mitochondria, complemented by aerobic glycolysis in the cytoplasm. When glucose levels are limited, ketone bodies generated in the liver and lactate derived from exercising skeletal muscle can also become important energy substrates for the brain. In neurodegenerative disorders of ageing, brain glucose metabolism deteriorates in a progressive, region-specific and disease-specific manner - a problem that is best characterized in Alzheimer disease, where it begins presymptomatically. This Review discusses the status and prospects of therapeutic strategies for countering neurodegenerative disorders of ageing by improving, preserving or rescuing brain energetics. The approaches described include restoring oxidative phosphorylation and glycolysis, increasing insulin sensitivity, correcting mitochondrial dysfunction, ketone-based interventions, acting via hormones that modulate cerebral energetics, RNA therapeutics and complementary multimodal lifestyle changes.


Assuntos
Envelhecimento/fisiologia , Encéfalo/fisiologia , Metabolismo Energético/fisiologia , Doenças Neurodegenerativas/fisiopatologia , Animais , Glicólise/fisiologia , Humanos , Fosforilação Oxidativa
12.
iScience ; 23(7): 101316, 2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32653807

RESUMO

Lactate shuttled from blood, astrocytes, and/or oligodendrocytes may serve as the major glucose alternative in brain energy metabolism. However, its effectiveness in fueling neuronal information processing underlying complex cortex functions like perception and memory is unclear. We show that sole lactate disturbs electrical gamma and theta-gamma oscillations in hippocampal networks by either attenuation or neural bursts. Bursting is suppressed by elevating the glucose fraction in substrate supply. By contrast, lactate does not affect electrical sharp wave-ripple activity featuring lower energy use. Lactate increases the oxygen consumption during the network states, reflecting enhanced oxidative ATP synthesis in mitochondria. Finally, lactate attenuates synaptic transmission in excitatory pyramidal cells and fast-spiking, inhibitory interneurons by reduced neurotransmitter release from presynaptic terminals, whereas action potential generation in the axon is regular. In conclusion, sole lactate is less effective and potentially harmful during gamma-band rhythms by omitting obligatory ATP delivery through fast glycolysis at the synapse.

13.
J Neurosci Res ; 98(10): 1953-1967, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32638411

RESUMO

Microglial cells (resident macrophages) feature rapid activation in CNS disease and can acquire multiple phenotypes exerting neuroprotection or neurotoxicity. The functional impact of surveying ("resting") microglia on neural excitability and neurotransmission in physiology is widely unknown, however. We addressed this issue in male rat hippocampal slice cultures (in situ) by pharmacological microglial ablation within days and by characterizing neuronal gamma-band oscillations (30-70 Hz) that are highly sensitive to neuromodulators and disturbances in ion and energy regulation. Gamma oscillations support action potential timing and synaptic plasticity, associate with higher brain functions like perception and memory, and require precise communication between excitatory pyramidal cells and inhibitory (GABAergic) interneurons. The slice cultures featured well-preserved hippocampal cytoarchitecture and parvalbumin-positive interneuron networks, microglia with ramified morphology, and low basal levels of IL-6, TNF-α, and nitric oxide (NO). Stimulation of slice cultures with the pro-inflammatory cytokine IFN-γ or bacterial LPS serving as positive controls for microglial reactivity induced MHC-II expression and increased cytokine and NO release. Chronic exposure of slice cultures to liposome-encapsulated clodronate reduced the microglial cell population by about 96%, whereas neuronal structures, astrocyte GFAP expression, and basal levels of cytokines and NO were unchanged. Notably, the properties of gamma oscillations reflecting frequency, number and synchronization of synapse activity were regular after microglial depletion. Also, electrical stimulus-induced transients of the extracellular potassium concentration ([K+ ]o ) reflecting cellular K+ efflux, clearance and buffering were unchanged. This suggests that nonreactive microglia are dispensable for neuronal homeostasis and neuromodulation underlying network signaling and rhythm generation in cortical tissue.


Assuntos
Ritmo Gama/fisiologia , Hipocampo/fisiologia , Microglia/fisiologia , Neurônios/fisiologia , Potássio/fisiologia , Animais , Animais Recém-Nascidos , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Hipocampo/citologia , Masculino , Técnicas de Cultura de Órgãos , Ratos , Ratos Wistar
14.
Brain Behav Immun ; 88: 802-814, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32446944

RESUMO

Microglia are tissue resident macrophages (innate immunity) and universal sensors of alterations in CNS physiology. In response to pathogen or damage signals, microglia feature rapid activation and can acquire different phenotypes exerting neuroprotection or neurotoxicity. Although transcriptional aspects of microglial phenotypic transitions have been described, the underlying metabolic reprogramming is widely unknown. Employing postnatal organotypic hippocampal slice cultures, we describe that microglia transformed into a mild reactive phenotype by single TLR4 stimulation with lipopolysaccharide (LPS), which was boosted into a severe neurotoxic phenotype by IFN-γ (LPS + INF-γ). The two reactive phenotypes associated with reduction of microglial homeostatic "surveillance" markers, increase of cytokine release (IL-6, TNF-α) as well as enhancement of tissue energy demand and lactate production. These reactive phenotypes differed in the pattern of inhibition of the respiratory chain in mitochondria, however. TLR4 stimulation induced succinate dehydrogenase (complex II) inhibition by the metabolite itaconate. By contrast, TLR4 + IFN-γ receptor stimulation mainly resulted in complex IV inhibition by nitric oxide (NO) that also associated with severe oxidative stress, neuronal dysfunction and death. Notably, pharmacological depletion of microglia or treatment with itaconate resulted in effective neuroprotection reflected by well-preserved cytoarchitecture and electrical network activity, i.e., neuronal gamma oscillations (30-70 Hz) that underlie higher cognitive functions in vivo. Our findings provide in situ evidence that (i) proinflammatory microglia can substantially alter brain energy metabolism and (ii) fine-tuning of itaconate and NO metabolism determines microglial reactivity, impairment of neural network function and neurodegeneration. These data add mechanistic insights into microglial activation, with relevance to disorders featuring neuroinflammation and to drug discovery.


Assuntos
Microglia , Mitocôndrias , Células Cultivadas , Lipopolissacarídeos/metabolismo , Microglia/metabolismo , Óxido Nítrico/metabolismo , Fenótipo
15.
J Cereb Blood Flow Metab ; 40(12): 2401-2415, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-31842665

RESUMO

Disturbances of cognitive functions occur rapidly during acute metabolic stress. However, the underlying mechanisms are not fully understood. Cortical gamma oscillations (30-100 Hz) emerging from precise synaptic transmission between excitatory principal neurons and inhibitory interneurons, such as fast-spiking GABAergic basket cells, are associated with higher brain functions, like sensory perception, selective attention and memory formation. We investigated the alterations of cholinergic gamma oscillations at the level of neuronal ensembles in the CA3 region of rat hippocampal slice cultures. We combined electrophysiology, calcium imaging (CamKII.GCaMP6f) and mild metabolic stress that was induced by rotenone, a lipophilic and highly selective inhibitor of complex I in the respiratory chain of mitochondria. The detected pyramidal cell ensembles showing repetitive patterns of activity were highly sensitive to mild metabolic stress. Whereas such synchronised multicellular activity diminished, the overall activity of individual pyramidal cells was unaffected. Additionally, mild metabolic stress had no effect on the rate of action potential generation in fast-spiking neural units. However, the partial disinhibition of slow-spiking neural units suggests that disturbances of ensemble formation likely result from alterations in synaptic inhibition. Our study bridges disturbances on the (multi-)cellular and network level to putative cognitive impairment on the system level.


Assuntos
Disfunção Cognitiva/metabolismo , Ritmo Gama/fisiologia , Hipocampo/metabolismo , Células Piramidais/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Disfunção Cognitiva/fisiopatologia , Eletrofisiologia/métodos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Ritmo Gama/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Interneurônios/classificação , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/fisiologia , Células Piramidais/metabolismo , Células Piramidais/fisiologia , Ratos , Ratos Wistar , Rotenona/administração & dosagem , Rotenona/farmacologia , Estresse Fisiológico/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Desacopladores/administração & dosagem , Desacopladores/farmacologia
16.
J Cereb Blood Flow Metab ; 40(11): 2225-2239, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31722597

RESUMO

The role of the mitochondrial calcium uniporter (MCU) gene (Mcu) in cellular energy homeostasis and generation of electrical brain rhythms is widely unknown. We investigated this issue in mice and rats using Mcu-knockout and -knockdown strategies in vivo and in situ and determined the effects of these genetic manipulations on hippocampal gamma oscillations (30-70 Hz) and sharp wave-ripples. These physiological network states require precise neurotransmission between pyramidal cells and inhibitory interneurons, support spike-timing and synaptic plasticity and are associated with perception, attention and memory. Absence of the MCU resulted in (i) gamma oscillations with decreased power (by >40%) and lower synchrony, including less precise neural action potential generation ('spiking'), (ii) sharp waves with decreased incidence (by about 22%) and decreased fast ripple frequency (by about 3%) and (iii) lack of activity-dependent pyruvate dehydrogenase dephosphorylation. However, compensatory adaptation in gene expression related to mitochondrial function and glucose metabolism was not detected. These data suggest that the neuronal MCU is crucial for the generation of network rhythms, most likely by influences on oxidative phosphorylation and perhaps by controlling cytoplasmic Ca2+ homeostasis. This work contributes to an increased understanding of mitochondrial Ca2+ uptake in cortical information processing underlying cognition and behaviour.


Assuntos
Canais de Cálcio/genética , Córtex Cerebral/fisiologia , Ritmo Circadiano , Vias Neurais , Animais , Ondas Encefálicas , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Metabolismo Energético , Perfilação da Expressão Gênica , Hipocampo/metabolismo , Homeostase , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo , Neurônios/metabolismo , Ratos , Ratos Transgênicos
17.
Glia ; 67(12): 2279-2293, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31313857

RESUMO

A traumatic childhood is among the most important risk factors for developing stress-related psychopathologies such as posttraumatic stress disorder or depression later in life. However, despite the proven role of astrocytes in regulating transmitter release and synaptic plasticity, the contribution of astrocytic transmitter metabolism to such stress-induced psychopathologies is currently not understood. In rodents, childhood adversity can be modeled by juvenile stress exposure, resulting in increased anxiety, and impaired coping with stress in adulthood. We describe that such juvenile stress in rats, regardless of additional stress in adulthood, leads to reduced synaptic efficacy in the ventral CA1 (vCA1) Schaffer collaterals, but increased long-term potentiation (LTP) of synaptic transmission after high-frequency stimulation. We tested whether the glutamate-glutamine-cycle guides the lasting changes on plasticity observed after juvenile stress by blocking the astrocytic glutamate-degrading enzyme, glutamine synthetase (GS). Indeed, the pharmacological inhibition of GS by methionine sulfoximine in slices from naïve rats mimics the effect of juvenile stress on vCA1-LTP, while supplying glutamine is sufficient to normalize the LTP. Assessing steady-state mRNA levels in the vCA1 stratum radiatum reveals distinct shifts in the expression of GS, astrocytic glutamate, and glutamine transporters after stress in juvenility, adulthood, or combined juvenile/adult stress. While GS mRNA expression levels are lastingly reduced after juvenile stress, GS protein levels are maintained stable. Together our results suggest a critical role for astrocytes and the glutamate-glutamine cycle in mediating long-term effects of juvenile stress on plasticity in the vCA1, a region associated with anxiety and emotional memory processing.


Assuntos
Astrócitos/enzimologia , Glutamato-Amônia Ligase/fisiologia , Hipocampo/enzimologia , Potenciação de Longa Duração/fisiologia , Estresse Psicológico/enzimologia , Fatores Etários , Animais , Astrócitos/patologia , Hipocampo/patologia , Masculino , Técnicas de Cultura de Órgãos , Ratos , Ratos Wistar , Estresse Psicológico/patologia , Estresse Psicológico/psicologia
18.
Proc Natl Acad Sci U S A ; 116(10): 4637-4642, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30782788

RESUMO

Type II IFN (IFN-γ) is a proinflammatory T lymphocyte cytokine that serves in priming of microglia-resident CNS macrophages-during the complex microglial activation process under pathological conditions. Priming generally permits an exaggerated microglial response to a secondary inflammatory stimulus. The impact of primed microglia on physiological neuronal function in intact cortical tissue (in situ) is widely unknown, however. We explored the effects of chronic IFN-γ exposure on microglia in hippocampal slice cultures, i.e., postnatal parenchyma lacking leukocyte infiltration (adaptive immunity). We focused on fast neuronal network waves in the gamma-band (30-70 Hz). Such gamma oscillations are fundamental to higher brain functions, such as perception, attention, and memory, and are exquisitely sensitive to metabolic and oxidative stress. IFN-γ induced substantial morphological changes and cell population expansion in microglia as well as moderate up-regulation of activation markers, MHC-II, CD86, IL-6, and inducible nitric oxide synthase (iNOS), but not TNF-α. Cytoarchitecture and morphology of pyramidal neurons and parvalbumin-positive inhibitory interneurons were well-preserved. Notably, gamma oscillations showed a specific decline in frequency of up to 8 Hz, which was not mimicked by IFN-α or IL-17 exposure. The rhythm disturbance was caused by moderate microglial nitric oxide (NO) release demonstrated by pharmacological microglia depletion and iNOS inhibition. In conclusion, IFN-γ priming induces substantial proliferation and moderate activation of microglia that is capable of slowing neural information processing. This mechanism might contribute to cognitive impairment in chronic brain disease featuring elevated IFN-γ levels, blood-brain barrier leakage, and/or T cell infiltration, well before neurodegeneration occurs.


Assuntos
Interferon gama/metabolismo , Microglia/metabolismo , Neurônios/citologia , Animais , Proliferação de Células , Hipocampo/química , Hipocampo/citologia , Hipocampo/metabolismo , Microglia/química , Microglia/citologia , Plasticidade Neuronal , Neurônios/química , Neurônios/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Ratos , Ratos Wistar
19.
PLoS One ; 14(1): e0209228, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30645585

RESUMO

Several lines of evidence imply changes in inhibitory interneuron connectivity and subsequent alterations in oscillatory network activities in the pathogenesis of Alzheimer's Disease (AD). Recently, we provided evidence for an increased immunoreactivity of both the postsynaptic scaffold protein gephyrin and the GABAA receptor γ2-subunit in the hippocampus of young (1 and 3 months of age), APPPS1 mice. These mice represent a well-established model of cerebral amyloidosis, which is a hallmark of human AD. In this study, we demonstrate a robust increase of parvalbumin immunoreactivity and accentuated projections of parvalbumin positive (PV+) interneurons, which target perisomatic regions of pyramidal cells within the hippocampal subregions CA1 and CA3 of 3-month-old APPPS1 mice. Colocalisation studies confirmed a significant increase in the density of PV+ projections labeled with antibodies against a presynaptic (vesicular GABA transporter) and a postsynaptic marker (gephyrin) of inhibitory synapses within the pyramidal cell layer of CA1 and CA3. As perisomatic inhibition by PV+-interneurons is crucial for the generation of hippocampal network oscillations involved in spatial processing, learning and memory formation we investigated the impact of the putative enhanced perisomatic inhibition on two types of fast neuronal network oscillations in acute hippocampal slices: 1. spontaneously occurring sharp wave-ripple complexes (SPW-R), and 2. cholinergic γ-oscillations. Interestingly, both network patterns were generally preserved in APPPS1 mice similar to WT mice. However, the comparison of simultaneous CA3 and CA1 recordings revealed that the incidence and amplitude of SPW-Rs were significantly lower in CA1 vs CA3 in APPPS1 slices, whereas the power of γ-oscillations was significantly higher in CA3 vs CA1 in WT-slices indicating an impaired communication between the CA3 and CA1 network activities in APPPS1 mice. Taken together, our data demonstrate an increased GABAergic synaptic output of PV+ interneurons impinging on pyramidal cells of CA1 and CA3, which might limit the coordinated cross-talk between these two hippocampal areas in young APPPS1 mice and mediate long-term changes in synaptic inhibition during progression of amyloidosis.


Assuntos
Doença de Alzheimer/metabolismo , Amiloidose/metabolismo , Hipocampo/metabolismo , Potenciais de Ação , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Amiloidose/genética , Amiloidose/patologia , Animais , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/patologia , Região CA3 Hipocampal/metabolismo , Região CA3 Hipocampal/patologia , Modelos Animais de Doenças , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/patologia , Ritmo Gama , Hipocampo/patologia , Humanos , Técnicas In Vitro , Interneurônios/metabolismo , Interneurônios/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Rede Nervosa/metabolismo , Rede Nervosa/patologia , Parvalbuminas/metabolismo , Presenilina-1/genética , Células Piramidais/metabolismo , Células Piramidais/patologia , Sinapses/metabolismo
20.
J Cereb Blood Flow Metab ; 39(5): 859-873, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-29099662

RESUMO

Cortical information processing comprises various activity states emerging from timed synaptic excitation and inhibition. However, the underlying energy metabolism is widely unknown. We determined the cerebral metabolic rate of oxygen (CMRO2) along a tissue depth of <0.3 mm in the hippocampal CA3 region during various network activities, including gamma oscillations and sharp wave-ripples that occur during wakefulness and sleep. These physiological states associate with sensory perception and memory formation, and critically depend on perisomatic GABA inhibition. Moreover, we modelled vascular oxygen delivery based on quantitative microvasculature analysis. (1) Local CMRO2 was highest during gamma oscillations (3.4 mM/min), medium during sharp wave-ripples, asynchronous activity and isoflurane application (2.0-1.6 mM/min), and lowest during tetrodotoxin application (1.4 mM/min). (2) Energy expenditure of axonal and synaptic signaling accounted for >50% during gamma oscillations. (3) CMRO2 positively correlated with number and synchronisation of activated synapses, and neural multi-unit activity. (4) The median capillary distance was 44 µm. (5) The vascular oxygen partial pressure of 33 mmHg was needed to sustain oxidative phosphorylation during gamma oscillations. We conclude that gamma oscillations featuring high energetics require a hemodynamic response to match oxygen consumption of respiring mitochondria, and that perisomatic inhibition significantly contributes to the brain energy budget.


Assuntos
Hipocampo/fisiologia , Rede Nervosa/fisiologia , Oxigênio/metabolismo , Potenciais de Ação , Animais , Metabolismo Energético , Hipocampo/irrigação sanguínea , Homeostase , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Rede Nervosa/irrigação sanguínea , Oxigênio/sangue , Transmissão Sináptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA