Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ocul Surf ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38703818

RESUMO

PURPOSE: Stevens-Johnson syndrome (SJS) is characterised as an immuno-inflammatory condition with potentially blinding ocular sequelae. Therefore, we have investigated the ocular surface immune cell profile and correlated it with secreted tear molecular factors and clinical ocular sequelae in SJS patients. METHODS: 21 patients (42 eyes) with chronic ocular SJS and 16 healthy controls (20 eyes) were included in the study. Severity, types of keratopathies and ocular surface(OS) manifestations were determined. OS wash samples from study subjects were used to determine the status of 13 immune cell subsets using flow cytometry. Levels of 42 secreted immuno-inflammatory factors were measured by flow cytometry-based multiplex ELISA in tear samples. RESULTS: Neutrophils (Total, activated), neutrophils/NK cells ratio, neutrophils/T cells ratio were significantly (p<0.05) elevated in SJS, while, proportions of T cells and NKT cells were significantly lower in SJS patients. Positive association between neutrophils and chronic ocular surface complication score (COCS) was observed, whereas, a negative association was noted between NK cells and COCS. Tear fluid levels of IL-6, IL-8, IL-18, IFNα/ß/γ, TNFα, LIF, IL-8, HGF, sTNFR-I, NGAL, Granzyme, Perforins, MMP9/TIMP1 ratio were significantly higher in SJS. Loss of Limbal niche correlated significantly with immune profile and clinical sequelae. Increased neutrophils, decreased NK cells and specific set of altered secreted immuno-inflammatory mediators including bFGF, and IL-8 were observed in SJS patients with different types of keratopathies compared to those without keratopathy. CONCLUSION: Distinct ocular surface immune profile variations were observed to correlate with clinical stages of chronic ocular SJS. Our findings uncover novel mechanisms and potential for targeted therapy in chronic ocular SJS patients.

2.
J Colloid Interface Sci ; 658: 699-713, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38141392

RESUMO

Due to the poor thermal stability of conventional separators, lithium-ion batteries require a suitable separator to maintain system safety for long-term cycling performance. It must have high porosity, superior electrolyte uptake ability, and good ion-conducting properties even at high temperatures. In this work, we demonstrate a novel composite membrane based on sandwiching of zeolitic imidazole frameworks-67 decorated cellulose acetate nanofibers (ZIF-67@CA) with electrospun poly(vinyl alcohol)/melamine (denoted as PVAM) nonwoven membranes. The as-prepared sandwich-type membranes are called PVAM/x%ZIF-67@CA/PVAM. The middle layer of composite membranes is primarily filled with different weight percentages of ZIF-67 nanoparticles (x = 5, 15, and 25 wt%), which both reduces the non-uniform porous structure of CA and increases its thermal stability. Therefore, our sandwich-type PVAM/x%ZIF-67@CA/PVAM membrane exhibits a higher thermal shrinkage effect at 200 °C than the commercial polyethylene (PE) separator. Due to its high electrolyte uptake (646.8%) and porosity (85.2%), PVAM/15%ZIF-67@CA/PVAM membrane achieved high ionic conductivity of 1.46 × 10-3 S cm-1 at 70 °C, as compared to the commercial PE separator (ca. 6.01 × 10-4 S cm-1 at 70 °C). Besides, the cell with PVAM/15%ZIF-67@CA/PVAM membrane shows an excellent discharge capacity of about 167.5 mAh g-1after 100 cycles at a 1C rate with a capacity retention of 90.3%. The ZIF-67 fillers in our sandwich-type composite membrane strongly attract anions (PF6-) through Lewis' acid-base interaction, allowing uniform Li+ ion transport and suppressing Li dendrites. As a result, we found that the PVAM/15%ZIF-67@CA/PVAM composite nonwoven membrane is applicable to high-power, high-safety lithium-ion battery systems that can be used in electric vehicles (EVs).

3.
Indian J Ophthalmol ; 71(5): 2143-2151, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37203095

RESUMO

Purpose: Pediatric cataract is a major cause of preventable childhood blindness worldwide. Although genetic mutations or infections have been described in patients, the mechanistic basis of human cataract development remains poorly understood. Therefore, gene expression of structural, developmental, profibrotic, and transcription factors in phenotypically and etiologically distinct forms of pediatric cataracts were evaluated. Methods: This cross-sectional study included 89 pediatric cataract subjects subtyped into 1) prenatal infectious (cytomegalovirus, rubella, and combined cytomegalovirus with rubella infection), 2) prenatal non-infectious, 3) posterior capsular anomalies, 4) postnatal, 5) traumatic, and 6) secondary, and compared to clear, non-cataractous material of eyes with the subluxated lenses. Expression of lens structure-related genes (Aqp-0, HspA4/Hsp70, CrygC), transcription factors (Tdrd7, FoxE3, Maf, Pitx 3) and profibrotic genes (Tgfß, Bmp7, αSmA, vimentin) in surgically extracted cataract lens material were studied and correlated clinically. Results: In cataract material, the lens-related gene expression profiles were uniquely associated with phenotype/etiology of different cataracts. Postnatal cataracts showed a significantly altered FoxE3 expression. Low levels of Tdrd7 expression correlated with posterior subcapsular opacity, whereas CrygC correlated significantly with anterior capsular ruptures. The expression of Aqp0 and Maf was elevated in infectious cataracts, particularly in CMV infections, compared to other cataract subtypes. Tgfß showed significantly low expression in various cataract subtypes, whereas vimentin had elevated gene expression in infectious and prenatal cataracts. Conclusion: A significant association between lens gene expression patterns in phenotypically and etiologically distinct subtypes of pediatric cataracts suggests regulatory mechanisms in cataractogenesis. The data reveal that cataract formation and presentation is a consequence of altered expression of a complex network of genes.


Assuntos
Catarata , Cristalino , Humanos , Criança , Vimentina/genética , Vimentina/metabolismo , Estudos Transversais , Transcriptoma , Catarata/genética , Catarata/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/genética , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo
4.
Indian J Ophthalmol ; 71(4): 1203-1214, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37026251

RESUMO

Dry eye disease (DED) is a multi-factorial ocular surface condition driven by compromised ocular lubrication and inflammation which leads to itching, dryness, and vision impairment. The available treatment modalities primarily target the acquired symptoms of DED including tear film supplements, anti-inflammatory drugs, mucin secretagogues, etc., However, the underlying etiology is still an area of active research, especially in regard to the diverse etiology and symptoms. Proteomics is a robust approach that has been playing major role in understanding the causative mechanism and biochemical changes in DED by identifying the changes in protein expression profile in tears. Tears are a complex fluid composed of several biomolecules such as proteins, peptides, lipids, mucins, and metabolites secreted from lacrimal gland, meibomian gland, cornea, and vascular sources. Over the past two decades, tears have emerged as a bona-fide source for biomarker identification in many ocular conditions because of the minimally invasive and simple sample collection procedure. However, the tear proteome can be altered by several factors, which increases the complexity of the approach. The recent advancements in untargeted mass spectrometry-based proteomics could overcome such shortcomings. Also, these technological advancements help to distinguish the DED profiles based on its association with other complications such as Sjogren's syndrome, rheumatoid arthritis, diabetes, and meibomian gland dysfunction. This review summarizes the important molecular profiles found in proteomics studies to be altered in DED which have added to the understanding of its pathogenesis.


Assuntos
Síndromes do Olho Seco , Aparelho Lacrimal , Síndrome de Sjogren , Humanos , Proteômica , Síndromes do Olho Seco/etiologia , Lágrimas/metabolismo , Síndrome de Sjogren/complicações , Síndrome de Sjogren/metabolismo , Mucinas/metabolismo
5.
Cancers (Basel) ; 14(20)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36291907

RESUMO

Advanced retinoblastoma (Rb) tumors display high metastatic spread to distant tissues, causing a potent threat to vision and life. Through transcriptomic profiling, we discovered key upregulated genes that belonged to the epithelial-mesenchymal transition (EMT) and chemotherapy resistance pathways in advanced Rb tumors. Through in vitro models, we further showed that Rb null tumor cells under prolonged chemo drug exposure, acquires a metastasis-like phenotype through the EMT program mediated by ZEB1 and SNAI2 and these cells further acquires chemotherapeutic resistance through cathepsin-L- and MDR1-mediated drug efflux mechanisms. Using a miRNA microarray, we identified miR-181a-5p as being significantly reduced in advanced Rb tumors, which was associated with an altered EMT and drug-resistance genes. We showed that enhancing miR-181a-5p levels in Rb null chemo-resistant sublines reduced the ZEB1 and SNAI2 levels and halted the mesenchymal transition switch, further reducing the drug resistance. We thus identified miR-181a-5p as a therapeutically exploitable target for EMT-triggered drug-resistant cancers that halted their invasion and migration and sensitized them to low-dose chemotherapy drugs.

6.
Cells ; 11(10)2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35626705

RESUMO

Retinoblastoma (Rb) is a pediatric intraocular malignancy that is proposed to originate from maturing cone cell precursors in the developing retina. The molecular mechanisms underlying the biological and clinical behaviors are important to understand in order to improve the management of advanced-stage tumors. While the genetic causes of Rb are known, an integrated understanding of the gene expression and metabolic processes in tumors of human eyes is deficient. By integrating transcriptomic profiling from tumor tissues and metabolomics from tumorous eye vitreous humor samples (with healthy, age-matched pediatric retinae and vitreous samples as controls), we uncover unique functional associations between genes and metabolites. We found distinct gene expression patterns between clinically advanced and non-advanced Rb. Global metabolomic analysis of the vitreous humor of the same Rb eyes revealed distinctly altered metabolites, indicating how tumor metabolism has diverged from healthy pediatric retina. Several key enzymes that are related to cellular energy production, such as hexokinase 1, were found to be reduced in a manner corresponding to altered metabolites; notably, a reduction in pyruvate levels. Similarly, E2F2 was the most significantly elevated E2F family member in our cohort that is part of the cell cycle regulatory circuit. Ectopic expression of the wild-type RB1 gene in the Rb-null Y79 and WERI-Rb1 cells rescued hexokinase 1 expression, while E2F2 levels were repressed. In an additional set of Rb tumor samples and pediatric healthy controls, we further validated differences in the expression of HK1 and E2F2. Through an integrated omics analysis of the transcriptomics and metabolomics of Rb, we uncovered a significantly altered tumor-specific metabolic circuit that reduces its dependence on glycolytic pathways and is governed by Rb1 and HK1.


Assuntos
Neoplasias da Retina , Retinoblastoma , Criança , Hexoquinase , Humanos , Neoplasias da Retina/genética , Neoplasias da Retina/metabolismo , Neoplasias da Retina/patologia , Retinoblastoma/genética , Retinoblastoma/metabolismo , Retinoblastoma/patologia , Proteína do Retinoblastoma/genética , Corpo Vítreo/metabolismo
7.
Ultrason Sonochem ; 66: 104977, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32315841

RESUMO

The innovation of novel and proficient nanostructured materials for the precise level determination of pharmaceuticals in biological fluids is quite crucial to the researchers. With this in mind, we synthesized iron molybdate nanoplates (Fe2(MoO4)3; FeMo NPs) via simple ultrasonic-assisted technique (70 kHz with a power of 100 W). The FeMo NPs were used as the efficient electrocatalyst for electrochemical oxidation of first-generation antihistamine drug- Promethazine hydrochloride (PMH). The as-synthesized FeMo NPs were characterized and confirmed by various characterization techniques such as XRD, Raman, FT-IR, FE-SEM, EDX and Elemental mapping analysis and electron impedance spectroscopy (EIS). In addition, the electrochemical characteristic features of FeMo NPs were scrutinized by electrochemical techniques like cyclic voltammetry (CV) and differential pulse voltammetry technique (DPV). Interestingly, the developed FeMo NPs modified glassy carbon electrode (FeMo NPs/GCE) discloses higher peak current with lesser anodic potential on comparing to bare GCE including wider linear range (0.01-68.65 µM), lower detection limit (0.01 µM) and greater sensitivity (0.97 µAµM-1cm-2). Moreover, the as-synthesized FeMo NPs applied for selectivity, reproducibility, repeatability and storage ability to investigate the practical viability. In the presence of interfering species like cationic, anionic and biological samples, the oxidation peak current response doesn't cause any variation results disclose good selectivity towards the detection of PMH. Additionally, the practical feasibility of the FeMo NPs/GCE was tested by real samples like, commercial tablet (Phenergan 25 mg Tablets) and lake water samples which give satisfactory recovery results. All the above consequences made clear that the proposed sensor FeMo NPs/GCE exhibits excellent electrochemical behavior for electrochemical determination towards oxidation of antihistamine drug PMH.


Assuntos
Carbono/química , Eletroquímica/instrumentação , Antagonistas dos Receptores Histamínicos/análise , Ferro/química , Molibdênio/química , Nanoestruturas/química , Prometazina/análise , Sonicação , Técnicas de Química Sintética , Eletrodos , Vidro/química , Antagonistas dos Receptores Histamínicos/sangue , Antagonistas dos Receptores Histamínicos/urina , Humanos , Concentração de Íons de Hidrogênio , Limite de Detecção , Prometazina/sangue , Prometazina/urina , Temperatura
8.
Ultrason Sonochem ; 56: 200-212, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31101256

RESUMO

A thermo-sensitive poly (N-isopropylacrylamide) covalently grafted carbon nanofibers (CNFs-g-PNIPAM) was designed and synthesized via ultrasonic "grafting-from" strategy for the first time. CNFs-g-PNIPAM could well perform the reversible regulation of hydrophilic/hydrophobic states in aqueous solution upon the switching of the temperature signal. Such distinctive property, CNFs-g-PNIPAM modified glassy carbon electrode (CNFs-g-PNIPAM/GC electrode) shows "on/off" switchability and temperature-tunable electrocatalytic activity towards clothianidin (CLD) that can be stimulated by external temperature. Cyclic voltammetry of CLD at the CNFs-g-PNIPAM/GC electrode displayed higher peak current at 25 °C showing the "on" state; at 40 °C, the peak current was significantly suppressed, showing the "off" state. The CNFs-g-PNIPAM/GC electrode reveal the better electrochemical performance of 'on/off' switching effect compared to virgin PNIPAM, due to the large surface area, good electron-transfer, and an intrinsic property of introduced CNFs. Moreover, this switchable sensing platform allows determining CLD in a good sensitivity (2.32 µA µM-1 cm-2) with a low detection limit (LOD) of 0.03 µM at 25 °C compared to 40 °C (LOD = 1.3 µM). Besides, this method was successfully applied to the determination of CLD in spiked apple extract and lake water samples. The switchable electrocatalytic performance of CNFs-g-PNIPAM/GC electrode may greatly enhance the flexibility of its application in the area of electrochemical sensor and electrocatalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA