Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Insect Biochem Mol Biol ; 96: 51-61, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29551461

RESUMO

The chemical composition of the scale insect Dactylopius coccus was analyzed with the aim to discover new possible intermediates in the biosynthesis of carminic acid. UPLC-DAD/HRMS analyses of fresh and dried insects resulted in the identification of three novel carminic acid analogues and the verification of several previously described intermediates. Structural elucidation revealed that the three novel compounds were desoxyerythrolaccin-O-glucosyl (DE-O-Glcp), 5,6-didehydroxyerythrolaccin 3-O-ß-D-glucopyranoside (DDE-3-O-Glcp), and flavokermesic acid anthrone (FKA). The finding of FKA in D. coccus provides solid evidence of a polyketide, rather than a shikimate, origin of coccid pigments. Based on the newly identified compounds, we present a detailed biosynthetic scheme that accounts for the formation of carminic acid (CA) in D. coccus and all described coccid pigments which share a flavokermesic acid (FK) core. Detection of coccid pigment intermediates in members of the Planococcus (mealybugs) and Pseudaulacaspis genera shows that the ability to form these pigments is taxonomically more widely spread than previously documented. The shared core-FK-biosynthetic pathway and wider taxonomic distribution suggests a common evolutionary origin for the trait in all coccid dye producing insect species.


Assuntos
Carmim/metabolismo , Hemípteros/metabolismo , Pigmentação/fisiologia , Animais , Hemípteros/genética
2.
Sci Rep ; 7(1): 8195, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28811511

RESUMO

The development of crop varieties tolerant to growth temperature fluctuations and improved nutritional value is crucial due to climate change and global population growth. This study investigated the metabolite patterns of developing barley seed as a function of genotype and growth temperature for ideal vegetable protein production and for augmented ß-glucan production. Seeds from three barley lines (Bomi, lys3.a and lys5.f) were sampled eight times during grain filling and analysed for metabolites using gas chromatography-mass spectrometry (GC-MS). The lys3.a mutation disrupts a regulator gene, causing an increase in proteins rich in the essential amino acid lysine, while lys5.f carries a mutation in an ADP-glucose transporter gene leading to a significant increase in production of mixed-linkage ß-glucan at the expense of α-glucan. Unique metabolic patterns associated with the tricarboxylic acid cycle, shikimate-phenylpropanoid pathway, mevalonate, lipid and carbohydrate metabolism were observed for the barley mutants, whereas growth temperature primarily affected shikimate-phenylpropanoid and lipid metabolism. The study applied recently developed GC-MS metabolomics methods and demonstrated their successful application to link genetic and environmental factors with the seed phenotype of unique and agro-economically important barley models for optimal vegetable protein and dietary fibre production.


Assuntos
Hordeum/metabolismo , Metaboloma , Metabolômica , Fenótipo , Sementes/metabolismo , Grão Comestível/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Genótipo , Hordeum/genética , Metabolômica/métodos , Mutação , Análise de Componente Principal , Sementes/genética , Temperatura
3.
Nat Commun ; 5: 5110, 2014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25300236

RESUMO

Cassava is a major tropical food crop in the Euphorbiaceae family that has high carbohydrate production potential and adaptability to diverse environments. Here we present the draft genome sequences of a wild ancestor and a domesticated variety of cassava and comparative analyses with a partial inbred line. We identify 1,584 and 1,678 gene models specific to the wild and domesticated varieties, respectively, and discover high heterozygosity and millions of single-nucleotide variations. Our analyses reveal that genes involved in photosynthesis, starch accumulation and abiotic stresses have been positively selected, whereas those involved in cell wall biosynthesis and secondary metabolism, including cyanogenic glucoside formation, have been negatively selected in the cultivated varieties, reflecting the result of natural selection and domestication. Differences in microRNA genes and retrotransposon regulation could partly explain an increased carbon flux towards starch accumulation and reduced cyanogenic glucoside accumulation in domesticated cassava. These results may contribute to genetic improvement of cassava through better understanding of its biology.


Assuntos
Evolução Molecular , Genoma de Planta , Manihot/genética , Variação Genética , Manihot/classificação , Manihot/metabolismo , Dados de Sequência Molecular , Fotossíntese , Filogenia , Proteínas de Plantas/genética , Seleção Genética , Amido/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA