Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 725: 150254, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-38901223

RESUMO

Decreased pancreatic ß-cell volume is a serious problem in patients with type 2 diabetes mellitus, and there is a need to establish appropriate treatments. Increasingly, sodium/glucose cotransporter 2 (SGLT2) inhibitors, which have a protective effect on pancreatic ß-cells, are being prescribed to treat diabetes; however, the underlying mechanism is not well understood. We previously administered SGLT2 inhibitor dapagliflozin to a mouse model of type 2 diabetes and found significant changes in gene expression in the early-treated group, which led us to hypothesize that epigenetic regulation was a possible mechanism of these changes. Therefore, we performed comprehensive DNA methylation analysis by methylated DNA immunoprecipitation using isolated pancreatic islets after dapagliflozin administration to diabetic model mice. As a result, we identified 31 genes with changes in expression due to DNA methylation changes. Upon immunostaining, cystic fibrosis transmembrane conductance regulator and cadherin 24 were found to be upregulated in islets in the dapagliflozin-treated group. These molecules may contribute to the maintenance of islet morphology and insulin secretory capacity, suggesting that SGLT2 inhibitors' protective effect on pancreatic ß-cells is accompanied by DNA methylation changes, and that the effect is long-term and not temporary. In future diabetes care, SGLT2 inhibitors may be expected to have positive therapeutic effects, including pancreatic ß-cell protection.


Assuntos
Compostos Benzidrílicos , Metilação de DNA , Diabetes Mellitus Tipo 2 , Glucosídeos , Ilhotas Pancreáticas , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Compostos Benzidrílicos/farmacologia , Compostos Benzidrílicos/uso terapêutico , Metilação de DNA/efeitos dos fármacos , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/patologia , Camundongos , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/patologia , Masculino , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Epigênese Genética/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Caderinas/metabolismo , Caderinas/genética
2.
Biochem Biophys Res Commun ; 652: 121-130, 2023 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-36842323

RESUMO

Eif2ak4, a susceptibility gene for type 2 diabetes, encodes GCN2, a molecule activated by amino acid deficiency. Mutations or deletions in GCN2 in pancreatic ß-cells increase mTORC1 activity by decreasing Sestrin2 expression in a TSC2-independent manner. In this study, we searched for molecules downstream of GCN2 that suppress mTORC1 activity in a TSC2-dependent manner. To do so, we used a pull-down assay to identify molecules that competitively inhibit the binding of the T1462 phosphorylation site of TSC2 to 14-3-3. l-asparaginase was identified. Although l-asparaginase is frequently used as an anticancer drug for acute lymphoblastic leukemia, little is known about endogenous l-asparaginase. l-Asparaginase, which is expressed downstream of GCN2, was found to bind 14-3-3 and thereby to inhibit its binding to the T1462 phosphorylation site of TSC2 and contribute to TSC2 activation and mTORC1 inactivation upon TSC2 dephosphorylation. Further investigation of the regulation of mTORC1 activity in pancreatic ß-cells by l-asparaginase should help to elucidate the mechanism of diabetes and insulin secretion failure during anticancer drug use.


Assuntos
Antineoplásicos , Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Asparaginase , Células Secretoras de Insulina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
3.
Biochem Biophys Res Commun ; 534: 896-901, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33168187

RESUMO

The reduction of pancreatic ß cell mass is one of the key factors for the onset of type 2 diabetes. Many reports have indicated that insulin signaling is important for type 2 diabetes, but the mechanism by which insulin signaling is altered in pancreatic ß cells remains unclear. This study was designed to examine the role of histone deacetylases (HDACs) in the regulation of insulin signaling in pancreatic ß cells. We found that insulin signaling was downregulated by inhibition of HDAC6. HDAC6 expression was specifically observed in pancreatic ß cells and was decreased in the pancreatic islets of a type 2 diabetes mouse model. When a mouse pancreatic ß cell line (MIN6 cells) was treated with palmitic acid to mimic the effect of a high-fat diet on pancreatic ß cells, HDAC6 was imported into the nucleus. These results suggest that HDAC6 plays an important role in the regulation of insulin signaling in pancreatic ß cells. Therefore, clarifying the regulation of insulin signaling by HDAC6 may be a valuable approach for the treatment of type 2 diabetes.


Assuntos
Desacetilase 6 de Histona/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Desacetilase 6 de Histona/análise , Masculino , Camundongos Endogâmicos C57BL
4.
Plant Cell Rep ; 39(11): 1415-1424, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32696230

RESUMO

KEY MESSAGE: This study established a rapid method for the gene expression analysis in potato tubers. The use of microtubers would be useful for primary evaluation of tuber-expressed genes. In the development of transgenic potato or of potato with other genome modifications (e.g., genome editing or RNA-directed DNA methylation (RdDM) and so on) to improve tuber traits, analysis of the target gene is often difficult because of the long cultivation cycle (3-4 months), large areas required, numerous materials for plant cultivation, and considerable efforts needed to obtain transgenic tubers. We demonstrate here rapid and convenient analysis of gene expression in potato microtubers. Enough microtubers for expression analysis can be induced over about 4 weeks in a simple liquid medium in an Erlenmeyer flask. High-quality RNA and protein can be easily prepared from microtubers and used for northern blot, qRT-PCR, and western blot analyses without further purification. We investigated the expression of two tuber-expressed genes (GBSS1 and Vinv) in microtubers derived from the wild-type and from lines derived from RdDM-mediated transcriptional gene silencing. As expected, the expression of both genes was similar between microtubers and normal tubers. Furthermore, we demonstrated that microtubers can be used in western blot and confocal immunofluorescent microscopy analyses. These results suggest that expression analysis using microtubers is a convenient tool for the analysis of tuber-expressed genes such as GBSS1 and Vinv in potato.


Assuntos
Perfilação da Expressão Gênica/métodos , Proteínas de Plantas/genética , Tubérculos/genética , Solanum tuberosum/genética , Técnicas de Cultura de Tecidos/métodos , Western Blotting , Meios de Cultura , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Microscopia de Fluorescência , Proteínas de Plantas/metabolismo , Brotos de Planta/citologia , Tubérculos/citologia , Tubérculos/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , RNA de Plantas
5.
JCI Insight ; 5(9)2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32376799

RESUMO

EIF2AK4, which encodes the amino acid deficiency-sensing protein GCN2, has been implicated as a susceptibility gene for type 2 diabetes in the Japanese population. However, the mechanism by which GCN2 affects glucose homeostasis is unclear. Here, we show that insulin secretion is reduced in individuals harboring the risk allele of EIF2AK4 and that maintenance of GCN2-deficient mice on a high-fat diet results in a loss of pancreatic ß cell mass. Our data suggest that GCN2 senses amino acid deficiency in ß cells and limits signaling by mechanistic target of rapamycin complex 1 to prevent ß cell failure during the consumption of a high-fat diet.


Assuntos
Aminoácidos/análise , Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Fígado , Proteínas Serina-Treonina Quinases , Adulto , Animais , Linhagem Celular Tumoral , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Predisposição Genética para Doença , Humanos , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , Pessoa de Meia-Idade , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/fisiologia , Ratos
6.
J Diabetes Investig ; 10(3): 577-590, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30290061

RESUMO

AIMS/INTRODUCTION: The preservation of pancreatic ß-cell mass is an essential factor in the onset and development of type 2 diabetes mellitus. Recently, sodium-glucose cotransporter 2 inhibitors have been launched as antihyperglycemic agents, and their organ-protective effects are attracting attention. They are also reported to have favorable effects on the preservation of pancreatic ß-cell mass, but the appropriate timing for the administration of sodium-glucose cotransporter 2 inhibitors is obscure. MATERIALS AND METHODS: In the present study, we administered a sodium-glucose cotransporter 2 inhibitor, dapagliflozin, to an animal model of type 2 diabetes mellitus, db/db mice, and investigated the adequate timing and duration for its administration. We also carried out microarray analysis using pancreatic islets from db/db mice. RESULTS: We found that dapagliflozin preserved pancreatic ß-cell mass depending on the duration of administration and markedly improved blood glucose levels. If the duration was the same, the earlier administration of dapagliflozin was more effective in preserving pancreatic ß-cell mass, increasing serum insulin levels and improving blood glucose levels. From microarray analysis, we discovered that the expression of Agr2, Tff2 and Gkn3 was significantly upregulated after the early administration of dapagliflozin. This upregulated gene expression might provide a legacy effect for the preservation of pancreatic ß-cell mass. CONCLUSIONS: We expect that the early administration of dapagliflozin would provide a long-lasting effect in preserving pancreatic ß-cell mass.


Assuntos
Compostos Benzidrílicos/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Modelos Animais de Doenças , Glucosídeos/farmacologia , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Animais , Biomarcadores/análise , Glicemia/análise , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/patologia , Células Secretoras de Insulina/efeitos dos fármacos , Masculino , Camundongos
7.
Kobe J Med Sci ; 64(2): E43-E55, 2018 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-30381726

RESUMO

Endoplasmic reticulum (ER) stress leads to peripheral insulin resistance and the progression of pancreatic beta cell failure in type 2 diabetes. Although ER stress plays an important role in the pathogenesis of diabetes, it is indispensable for cellular activity. Therefore, when assessing the pathological significance of ER stress, it is important to monitor and quantify ER stress levels. Here, we have established a novel system to monitor ER stress levels quickly and sensitively, and using this method, we have clarified the effect of differences in glucose concentration and various fatty acids on the ER of pancreatic ß cells. First, we developed a cell system that secretes Gaussia luciferase in culture medium depending on the activation of the GRP78 promoter. This system could sensitively monitor ER stress levels that could not be detected with real-time RT-PCR and immunoblotting. This system revealed that hyperglycemia does not induce unfolded protein response (UPR) in a short period of time in MIN6 cells, a mouse pancreatic ß cell line. Physiological concentrations of palmitic acid, a saturated fatty acid, induced ER stress quickly, while physiological concentrations of oleic acid, an unsaturated fatty acid, did not. Docosahexaenoic acid, an n-3 unsaturated fatty acid, inhibited palmitic acid-induced ER stress. In this study, we have established a system that can sensitively detect ER stress levels of living cells in a short period of time. This system can be used to monitor the state of the ER in living cells and lead to the investigation of the significance of physiological or pathological ER stress levels.


Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Ácido Palmítico/antagonistas & inibidores , Animais , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Linhagem Celular , Chaperona BiP do Retículo Endoplasmático , Glucose/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Camundongos , Ácido Oleico/toxicidade , Ácido Palmítico/toxicidade , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo
8.
Biochem Biophys Res Commun ; 497(1): 451-456, 2018 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-29448105

RESUMO

During the development of type 2 diabetes, endoplasmic reticulum (ER) stress leads to pancreatic ß cell failure. CCAAT/enhancer-binding protein (C/EBP) ß is highly induced by ER stress and AMP-activated protein kinase (AMPK) suppression in pancreatic ß cells, and its accumulation reduces pancreatic ß cell mass. We investigated the phosphorylation state of C/EBPß under these conditions. Casein kinase 2 (CK2) was found to co-localize with C/EBPß in MIN6 cells. It phosphorylated S222 of C/EBPß, a previously unidentified phosphorylation site. We found that C/EBPß is phosphorylated by CK2 under AMPK suppression and ER stress, which are important from the viewpoint of the worsening pathological condition of type 2 diabetes, such as decreased insulin secretion and apoptosis of pancreatic ß cells.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Caseína Quinase II/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Células Secretoras de Insulina/metabolismo , Proteínas Quinases/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Animais , Linhagem Celular , Camundongos , Fosforilação
9.
PLoS One ; 12(9): e0184435, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28886131

RESUMO

Recent studies demonstrated that insulin signaling plays important roles in the regulation of pancreatic ß cell mass, the reduction of which is known to be involved in the development of diabetes. However, the mechanism underlying the alteration of insulin signaling in pancreatic ß cells remains unclear. The involvement of epigenetic control in the onset of diabetes has also been reported. Thus, we analyzed the epigenetic control of insulin receptor substrate 2 (IRS2) expression in the MIN6 mouse insulinoma cell line. We found concomitant IRS2 up-regulation and enhanced insulin signaling in MIN6 cells, which resulted in an increase in cell proliferation. The H3K9 acetylation status of the Irs2 promoter was positively associated with IRS2 expression. Treatment of MIN6 cells with histone deacetylase inhibitors led to increased IRS2 expression, but this occurred in concert with low insulin signaling. We observed increased IRS2 lysine acetylation as a consequence of histone deacetylase inhibition, a modification that was coupled with a decrease in IRS2 tyrosine phosphorylation. These results suggest that insulin signaling in pancreatic ß cells is regulated by histone deacetylases through two novel pathways affecting IRS2: the epigenetic control of IRS2 expression by H3K9 promoter acetylation, and the regulation of IRS2 activity through protein modification. The identification of the histone deacetylase isoform(s) involved in these mechanisms would be a valuable approach for the treatment of type 2 diabetes.


Assuntos
Histona Desacetilases/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Transdução de Sinais , Acetilação , Animais , Linhagem Celular Tumoral , Proliferação de Células , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Histonas/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Camundongos , Camundongos Knockout , Modelos Biológicos , Fosforilação , Regiões Promotoras Genéticas , Transdução de Sinais/efeitos dos fármacos
10.
PLoS One ; 10(6): e0130757, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26091000

RESUMO

During the development of type 2 diabetes, endoplasmic reticulum (ER) stress leads to not only insulin resistance but also to pancreatic beta cell failure. Conversely, cell function under various stressed conditions can be restored by reducing ER stress by activating AMP-activated protein kinase (AMPK). However, the details of this mechanism are still obscure. Therefore, the current study aims to elucidate the role of AMPK activity during ER stress-associated pancreatic beta cell failure. MIN6 cells were loaded with 5-amino-1-ß-D-ribofuranosyl-imidazole-4-carboxamide (AICAR) and metformin to assess the relationship between AMPK activity and CCAAT enhancer binding protein ß (C/EBPß) expression levels. The effect of C/EBPß phosphorylation on expression levels was also investigated. Vildagliptin and metformin were administered to pancreatic beta cell-specific C/EBPß transgenic mice to investigate the relationship between C/EBPß expression levels and AMPK activity in the pancreatic islets. When pancreatic beta cells are exposed to ER stress, the accumulation of the transcription factor C/EBPß lowers the AMP/ATP ratio, thereby decreasing AMPK activity. In an opposite manner, incubation of MIN6 cells with AICAR or metformin activated AMPK, which suppressed C/EBPß expression. In addition, administration of the dipeptidyl peptidase-4 inhibitor vildagliptin and metformin to pancreatic beta cell-specific C/EBPß transgenic mice decreased C/EBPß expression levels and enhanced pancreatic beta cell mass in proportion to the recovery of AMPK activity. Enhanced C/EBPß expression and decreased AMPK activity act synergistically to induce ER stress-associated pancreatic beta cell failure.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Proteínas Quinases Ativadas por AMP/genética , Adamantano/análogos & derivados , Adamantano/farmacologia , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Proteína beta Intensificadora de Ligação a CCAAT/genética , Linhagem Celular , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Teste de Tolerância a Glucose , Hipoglicemiantes/farmacologia , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Metformina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Nitrilas/farmacologia , Fosforilação/efeitos dos fármacos , Pirrolidinas/farmacologia , Ribonucleotídeos/farmacologia , Vildagliptina
11.
Proc Natl Acad Sci U S A ; 112(27): 8332-7, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26100882

RESUMO

Genetic factors are important determinants of the onset and progression of diabetes mellitus. Numerous susceptibility genes for type 2 diabetes, including potassium voltage-gated channel, KQT-like subfamily Q, member1 (KCNQ1), have been identified in humans by genome-wide analyses and other studies. Experiments with genetically modified mice have also implicated various genes in the pathogenesis of diabetes. However, the possible effects of the parent of origin for diabetes susceptibility alleles on disease onset have remained unclear. Here, we show that a mutation at the Kcnq1 locus reduces pancreatic ß-cell mass in mice by epigenetic modulation only when it is inherited from the father. The noncoding RNA KCNQ1 overlapping transcript1 (Kcnq1ot1) is expressed from the Kcnq1 locus and regulates the expression of neighboring genes on the paternal allele. We found that disruption of Kcnq1 results in reduced Kcnq1ot1 expression as well as the increased expression of cyclin-dependent kinase inhibitor 1C (Cdkn1c), an imprinted gene that encodes a cell cycle inhibitor, only when the mutation is on the paternal allele. Furthermore, histone modification at the Cdkn1c promoter region in pancreatic islets was found to contribute to this phenomenon. Our observations suggest that the Kcnq1 genomic region directly regulates pancreatic ß-cell mass and that genomic imprinting may be a determinant of the onset of diabetes mellitus.


Assuntos
Inibidor de Quinase Dependente de Ciclina p57/genética , Epigênese Genética , Células Secretoras de Insulina/metabolismo , Canal de Potássio KCNQ1/genética , Mutação , Alelos , Animais , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Expressão Gênica , Impressão Genômica/genética , Glucose/farmacologia , Teste de Tolerância a Glucose , Immunoblotting , Padrões de Herança , Insulina/sangue , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Canal de Potássio KCNQ1/metabolismo , Masculino , Camundongos Knockout , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
Biochem Biophys Res Commun ; 458(3): 681-686, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25686499

RESUMO

A high-fat diet (HF) is associated with obesity, insulin resistance, and hyperglycemia. Animal studies have shown compensatory mechanisms in pancreatic ß-cells after high fat load, such as increased pancreatic ß-cell mass, enhanced insulin secretion, and exocytosis. However, the effects of high fat intake on insulin synthesis are obscure. Here, we investigated whether insulin synthesis was altered in correlation with an HF diet, for the purpose of obtaining further understanding of the compensatory mechanisms in pancreatic ß-cells. Mice fed an HF diet are obese, insulin resistant, hyperinsulinemic, and glucose intolerant. In islets of mice fed an HF diet, more storage of insulin was identified. We analyzed insulin translation in mouse islets, as well as in INS-1 cells, using non-radioisotope chemicals. We found that insulin translational levels were significantly increased in islets of mice fed an HF diet to meet systemic demand, without altering its transcriptional levels. Our data showed that not only increased pancreatic ß-cell mass and insulin secretion but also elevated insulin translation is the major compensatory mechanism of pancreatic ß-cells.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Hiperinsulinismo/complicações , Células Secretoras de Insulina/patologia , Insulina/genética , Obesidade/complicações , Biossíntese de Proteínas , Animais , Linhagem Celular , Hiperinsulinismo/genética , Hiperinsulinismo/patologia , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/etiologia , Obesidade/genética , Obesidade/patologia , Transcrição Gênica
13.
Diabetes ; 63(9): 2996-3008, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24740570

RESUMO

Hyperactivation of the mammalian target of rapamycin complex 1 (mTORC1) in ß-cells is usually found as a consequence of increased metabolic load. Although it plays an essential role in ß-cell compensatory mechanisms, mTORC1 negatively regulates autophagy. Using a mouse model with ß-cell-specific deletion of Tsc2 (ßTsc2(-/-)) and, consequently, mTORC1 hyperactivation, we focused on the role that chronic mTORC1 hyperactivation might have on ß-cell failure. mTORC1 hyperactivation drove an early increase in ß-cell mass that later declined, triggering hyperglycemia. Apoptosis and endoplasmic reticulum stress markers were found in islets of older ßTsc2(-/-) mice as well as accumulation of p62/SQSTM1 and an impaired autophagic response. Mitochondrial mass was increased in ß-cells of ßTsc2(-/-) mice, but mitophagy was also impaired under these circumstances. We provide evidence of ß-cell autophagy impairment as a link between mTORC1 hyperactivation and mitochondrial dysfunction that probably contributes to ß-cell failure.


Assuntos
Autofagia/fisiologia , Células Secretoras de Insulina/patologia , Complexos Multiproteicos/fisiologia , Serina-Treonina Quinases TOR/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Apoptose , Estresse do Retículo Endoplasmático , Células HEK293 , Proteínas de Choque Térmico/deficiência , Proteínas de Choque Térmico/metabolismo , Humanos , Resistência à Insulina , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Proteína Sequestossoma-1 , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/deficiência
14.
J Mol Endocrinol ; 49(2): 125-35, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22822047

RESUMO

The development of type 2 diabetes is accompanied by a progressive decline in ß-cell mass and function. Vildagliptin, a dipeptidyl peptidase 4 inhibitor, is representative of a new class of antidiabetic agents that act through increasing the expression of glucagon-like peptide-1. The protective effect of this agent on ß cells was studied in diabetic mice. Diabetic pancreatic ß cell-specific C/EBPB transgenic (TG) mice exhibit decreased ß-cell mass associated with increased apoptosis, decreased proliferation, and aggravated endoplasmic reticulum (ER) stress. Vildagliptin was orally administered to the TG mice for a period of 24 weeks, and the protective effects of this agent on ß cells were examined, along with the potential molecular mechanism of protection. Vildagliptin ameliorated hyperglycemia in TG mice by increasing the serum concentration of insulin and decreasing the serum concentration of glucagon. This agent also markedly increased ß-cell mass, improved aggravated ER stress, and restored attenuated insulin/IGF1 signaling. A decrease in pancreatic and duodenal homeobox 1 expression was also observed in ß cells isolated from our mouse model, but this was also restored by vildagliptin treatment. The expression of C/EBPB protein, but not mRNA, was unexpectedly downregulated in vildagliptin-treated TG mice and in exenatide-treated MIN6 cells. Activation of the GLP1 pathway induced proteasome-dependent C/EBPB degradation in ß cells as the proteasome inhibitor MG132 restored the downregulation of C/EBPB protein by exenatide. Vildagliptin elicits protective effects on pancreatic ß cells, possibly through C/EBPB degradation, and has potential for preventing the progression of type 2 diabetes.


Assuntos
Adamantano/análogos & derivados , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Nitrilas/farmacologia , Pirrolidinas/farmacologia , Adamantano/farmacologia , Animais , Glicemia/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/genética , Exenatida , Regulação da Expressão Gênica/efeitos dos fármacos , Glucagon/sangue , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Hiperglicemia/tratamento farmacológico , Insulina/sangue , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Leupeptinas/farmacologia , Camundongos , Camundongos Transgênicos , Peptídeos/farmacologia , Peçonhas/farmacologia , Vildagliptina
15.
PLoS One ; 6(8): e23238, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21886784

RESUMO

AIM: We previously found that chronic tuberous sclerosis protein 2 (TSC2) deletion induces activation of mammalian target of rapamycin Complex 1 (mTORC1) and leads to hypertrophy of pancreatic beta cells from pancreatic beta cell-specific TSC2 knockout (ßTSC2(-/-)) mice. The present study examines the effects of TSC2 ablation on insulin secretion from pancreatic beta cells. METHODS: Isolated islets from ßTSC2(-/-) mice and TSC2 knockdown insulin 1 (INS-1) insulinoma cells treated with small interfering ribonucleic acid were used to investigate insulin secretion, ATP content and the expression of mitochondrial genes. RESULTS: Activation of mTORC1 increased mitochondrial DNA expression, mitochondrial density and ATP production in pancreatic beta cells of ßTSC2(-/-) mice. In TSC2 knockdown INS-1 cells, mitochondrial DNA expression, mitochondrial density and ATP production were increased compared with those in control INS-1 cells, consistent with the phenotype of ßTSC2(-/-) mice. TSC2 knockdown INS-1 cells also exhibited augmented insulin secretory response to glucose. Rapamycin inhibited mitochondrial DNA expression and ATP production as well as insulin secretion in response to glucose. Thus, ßTSC2(-/-) mice exhibit hyperinsulinemia due to an increase in the number of mitochondria as well as enlargement of individual beta cells via activation of mTORC1. CONCLUSION: Activation of mTORC1 by TSC2 ablation increases mitochondrial biogenesis and enhances insulin secretion from pancreatic beta cells.


Assuntos
Deleção de Genes , Insulina/metabolismo , Mitocôndrias/metabolismo , Proteínas/metabolismo , Proteínas Supressoras de Tumor/deficiência , Animais , Linhagem Celular , Técnicas de Silenciamento de Genes , Glucose/farmacologia , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Mitocôndrias/efeitos dos fármacos , Complexos Multiproteicos , Especificidade de Órgãos/efeitos dos fármacos , Sirolimo/farmacologia , Serina-Treonina Quinases TOR , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA