Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 344(Pt B): 126246, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34743992

RESUMO

The widespread distribution of organic and inorganic pollutants in water resources have increased due to rapid industrialization. Rhizospheric zone-associated bacteria along with endophytic bacteria show a significant role in remediation of various pollutants. Metaomics technologies are gaining an advantage over traditional methods because of their capability to obtain detailed information on exclusive microbial communities in rhizosphere of the plant including the unculturable microorganisms. Transcriptomics, proteomics, and metabolomics are functional methodologies that help to reveal the mechanisms of plant-microbe interactions and their synergistic roles in remediation of pollutants. Intensive analysis of metaomics data can be useful to understand the interrelationships of various metabolic activities between plants and microbes. This review comprehensively discusses recent advances in omics applications made hitherto to understand the mechanisms of plant-microbe interactions during phytoremediation. It extends the delivery of the insightful information on plant-microbiomes communications with an emphasis on their genetic, biochemical, physical, metabolic, and environmental interactions.


Assuntos
Microbiota , Poluentes do Solo , Bactérias/genética , Biodegradação Ambiental , Plantas , Rizosfera , Poluentes do Solo/análise
2.
Cell Mol Life Sci ; 78(19-20): 6351-6364, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34279698

RESUMO

Ageing in plants is a highly coordinated and complex process that starts with the birth of the plant or plant organ and ends with its death. A vivid manifestation of the final stage of leaf ageing is exemplified by the autumn colours of deciduous trees. Over the past decades, technological advances have allowed plant ageing to be studied on a systems biology level, by means of multi-omics approaches. Here, we review some of these studies and argue that these provide strong support for basic metabolic processes as drivers for ageing. In particular, core cellular processes that control the metabolism of chlorophyll, amino acids, sugars, DNA and reactive oxygen species correlate with leaf ageing. However, while multi-omics studies excel at identifying correlative processes and pathways, molecular genetic approaches can provide proof that such processes and pathways control ageing, by means of knock-out and ectopic expression of predicted regulatory genes. Therefore, we also review historic and current molecular evidence to directly test the hypotheses unveiled by the systems biology approaches. We found that the molecular genetic approaches, by and large, confirm the multi-omics-derived hypotheses with notable exceptions, where there is scant evidence that chlorophyll and DNA metabolism are important drivers of leaf ageing. We present a model that summarises the core cellular processes that drive leaf ageing and propose that developmental processes are tightly linked to primary metabolism to inevitably lead to ageing and death.


Assuntos
Envelhecimento/fisiologia , Folhas de Planta/fisiologia , Envelhecimento/metabolismo , Humanos , Folhas de Planta/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estações do Ano , Biologia de Sistemas/métodos
3.
J Exp Bot ; 71(20): 6340-6354, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32720687

RESUMO

Leaf senescence is the final stage of leaf development and is induced by the gradual occurrence of age-related changes (ARCs). The process of leaf senescence has been well described, but the cellular events leading to this process are still poorly understood. By analysis of progressively ageing, but not yet senescing, Arabidopsis thaliana rosette leaves, we aimed to better understand processes occurring prior to the onset of senescence. Using gene expression analysis, we found that as leaves mature, genes responding to oxidative stress and genes involved in stress hormone biosynthesis and signalling were up-regulated. A decrease in primary metabolites that provide protection against oxidative stress was a possible explanation for the increased stress signature. The gene expression and metabolomics changes occurred concomitantly to a decrease in drought, salinity, and dark stress tolerance of individual leaves. Importantly, stress-related genes showed elevated expression in the early ageing mutant old5 and decreased expression in the delayed ageing mutant ore9. We propose that the decreased stress tolerance with age results from the occurrence of senescence-inducing ARCs that is integrated into the leaf developmental programme, and that this ensures a timely and certain death.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo
4.
Metabolites ; 11(1)2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33396419

RESUMO

Abiotic stresses, which at the molecular level leads to oxidative damage, are major determinants of crop yield loss worldwide. Therefore, considerable efforts are directed towards developing strategies for their limitation and mitigation. Here the superoxide-inducing agent paraquat (PQ) was used to induce oxidative stress in the model species Arabidopsis thaliana and the crops tomato and pepper. Pre-treatment with the biostimulant SuperFifty (SF) effectively and universally suppressed PQ-induced leaf lesions, H2O2 build up, cell destruction and photosynthesis inhibition. To further investigate the stress responses and SF-induced protection at the molecular level, we investigated the metabolites by GC-MS metabolomics. PQ induced specific metabolic changes such as accumulation of free amino acids (AA) and stress metabolites. These changes were fully prevented by the SF pre-treatment. Moreover, the metabolic changes of the specific groups were tightly correlating with their phenotypic characteristics. Overall, this study presents physiological and metabolomics data which shows that SF protects against oxidative stress in all three plant species.

5.
Methods Mol Biol ; 1744: 195-220, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29392668

RESUMO

Postharvest deterioration of fruits and vegetables can be accelerated by biological, environmental, and physiological stresses. Fully understanding tissue response to harvest will provide new opportunities for limiting postharvest losses during handling and storage. The model plant Arabidopsis thaliana (Arabidopsis) has many attributes that make it excellent for studying the underlying control of postharvest responses. It is also one of the best resourced plants with numerous web-based bioinformatic programs and large numbers of mutant collections. Here we introduce a novel assay system called AIDA (the Arabidopsis Inflorescence Degreening Assay) that we developed for understanding postharvest response of immature tissues. We also demonstrate how the high-throughput screening capability of AIDA can be used with mapping technologies (high-resolution melting [HRM] and needle in the k-stack [NIKS]) to identify regulators of postharvest senescence in ethyl methanesulfonate (EMS) mutagenized plant populations. Whether it is best to use HRM or NIKS or both technologies will depend on your laboratory facilities and computing capabilities.


Assuntos
Envelhecimento , Arabidopsis/fisiologia , Fenômenos Fisiológicos Vegetais , Biomarcadores , Clorofila/metabolismo , Mapeamento Cromossômico , Genômica , Especificidade de Órgãos , Fenótipo , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA