Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(23): 8723-8730, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38873074

RESUMO

Electrochemiluminescence (ECL) is a powerful analytical approach that enables the optical readout of electrochemical processes. Over the last few years, ECL has gained considerable attention due to its large number of applications, including chemical sensing, bioanalysis and microscopy. In these fields, the promotion of ECL at bipolar electrodes has offered unprecedented opportunities thanks to wireless electrochemical addressing. Herein, we take advantage of the synergy between ECL and bipolar electrochemistry (BE) for imaging light-emitting layers shaped by hydrodynamics, polarization effects and the nature of the electrochemical reactions taking place wirelessly on a rotating bipolar electrode. The proof-of-principle is established with the model ECL system [Ru(bpy)3]2+/tri-n-propylamine. Interestingly, the ECL-emitting region moves and expands progressively from the anodic bipolar pole to the cathodic one where ECL reactants should neither be generated nor ECL be observed. Therefore, it shows a completely unusual behavior in the ECL field since the region where ECL reagents are oxidized does not coincide with the zone where ECL light is emitted. In addition, the ECL patterns change progressively to an "ECL croissant" and then to a complete ring shape due to the hydrodynamic convection. Such an approach allows the visualization of complex light-emitting patterns, whose shape is directly controlled by the rotation speed, chemical reactivity and BE-induced polarization. Indeed, the bipolar electrochemical addressing of the electrode breaks the circular symmetry of the reported rotating system. This unexplored and a priori simple configuration yields unique ECL behavior and raises new curious questions from the theoretical and experimental points of view in analytical chemistry. Finally, this novel wireless approach will be useful for the development of original ECL systems for analytical chemistry, studies of electrochemical reactivity, coupling microfluidics with ECL and imaging.

2.
Small ; : e2309607, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38757541

RESUMO

Understanding the oxidation/reduction dynamics of secondary microparticles formed from agglomerated nanoscale primary particles is crucial for advancing electrochemical energy storage technologies. In this study, the behavior of individual copper hexacyanoferrate (CuHCF) microparticles is explored at both global and local scales combining scanning electrochemical microscopy (SECM), for electrochemical interrogation of a single, but global-scale microparticle, and optical microscopy monitoring to obtain a higher resolution dynamic image of the local electrochemistry within the same particle. Chronoamperometric experiments unveil a multistep oxidation/reduction process with varying dynamics. On the one hand, the global SECM analysis enables quantifying the charge transfer as well as its dynamics at the single microparticle level during the oxidation/reduction cycles by a redox mediator in solution. These conditions allow mimicking the charge storage processes in these particles when they are used as solid boosters in redox flow batteries. On the other hand, optical imaging with sub-particle resolution allows the mapping of local conversion rates and state-of-charge within individual CuHCF particles. These maps reveal that regions of different material loadings exhibit varying charge storage capacities and conversion rates. The findings highlight the significance of porous nanostructures and provide valuable insights for designing more efficient energy storage materials.

3.
Anal Chem ; 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38340052

RESUMO

Tip-enhanced Raman spectroscopy (TERS) is an emerging nanospectroscopy technique whose implementation in situ/operando, namely, in the liquid phase and under electrochemical polarization (EC-TERS), remains challenging. The investigation of electrochemical processes at the nanoscale, in real time and over wide potential windows can be of particular interest but tedious when using EC-STM-TERS. This approach was successfully applied to the investigation of a well-established but yet complex system (a thiolated nitrobenzene derivative 4-NBM) whose reduction mechanism involves various multistep reaction paths, most likely pH-dependent. In light of the EC-TERS analysis carried out under specific conditions limiting the full (6 e-/6 H+) electrochemical reduction of 4-NBM and its photocoupling, a bimolecular electrochemical reaction path, difficult to evidence from the electrochemical response only, is proposed.

4.
Anal Chem ; 96(3): 1129-1137, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38197168

RESUMO

The stark difference between global and local metal oxidation dynamics underscores the need for methodologies capable of performing precise sub-µm-scale and wide-field measurements. In this study, we present reflective microscopy as a tool developed to address this challenge, illustrated by the example of chronoamperometric Fe oxidation in a NaCl solution. Analysis at a local scale of 10 s of µm has revealed three distinct periods of Fe oxidation: the initial covering of the metal interface with a surface film, followed by the electrochemical conversion of the formed surface film, and finally, the in-depth oxidation of Fe. In addition, thermodynamic calculations and the quantitative analysis of changes in optical signal (light intensity), correlated with variations in refractive indexes, suggest the initial formation of maghemite, followed by its subsequent conversion to magnetite. The reactivity maps for all three periods are heterogeneous, which can be attributed to the preferential oxidation of certain crystallographic grains. Notably, at the global scale of 100 s of µm, reactivity initiates at the electrode border and progresses toward its center, demonstrating a unique pattern that is independent of the local metal structure. This finding underscores the significance of simultaneously employing sub-µm-precise, quantitative, and wide-field measurements for a comprehensive description of metal oxidation processes.

5.
Chem Sci ; 15(3): 1150-1158, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38239687

RESUMO

Electrochemiluminescence (ECL) is a highly sensitive mode of detection utilised in commercialised bead-based immunoassays. Recently, the introduction of a freely diffusing water-soluble Ir(iii) complex was demonstrated to enhance the ECL emission of [Ru(bpy)3]2+ labels anchored to microbeads, but a comprehensive investigation of the proposed 'redox-mediated' mechanism was not carried out. In this work, we select three different water-soluble Ir(iii) complexes by virtue of their photophysical and electrochemical properties in comparison with those of the [Ru(bpy)3]2+ luminophore and the TPrA co-reactant. A systematic investigation of the influence of each Ir(iii) complex on the emission of the Ru(ii) labels on single beads by ECL microscopy revealed that the heterogeneous ECL can be finely tuned and either enhanced up to 107% or lowered by 75%. The variation of the [Ru(bpy)3]2+ ECL emission was correlated to the properties of each Ir(iii)-based mediator, which enabled us to decipher the mechanism of interaction and define guidelines for the future design of novel Ir(iii) complexes to further enhance the ECL emission of bead-based immunoassays. Ultimately, we showcase the potential of this technology for practical sample analysis in commercial instruments by assessing the enhancement of the collective ECL intensity from a bead-based system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA