Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 349: 1045-1051, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35868358

RESUMO

Drug delivery to the suprachoroidal space (SCS®) has become a clinical reality after the 2021 FDA approval of CLS-TA, a triamcinolone acetonide injectable suspension for suprachoroidal use (XIPERE®), administered via a microneedle-based device, the SCS Microinjector®. Suprachoroidal (SC) delivery facilitates targeting, compartmentalization, and durability of small molecule suspensions, thereby potentially addressing some of the efficacy, safety, and treatment burden limitations of current retinal therapies. Herein, the design features of the SCS Microinjector are reviewed, along with the biomechanics of SC drug delivery. Also presented are preclinical evaluations of SC small molecule suspensions from 4 different therapeutic classes (plasma kallikrein inhibitor, receptor tyrosine kinase inhibitor, corticosteroid, complement factor D inhibitor), highlighting their potential for durability, targeted compartmentalization, and acceptable safety profiles following microinjector-based SC delivery. The clinical evaluations of the safety, tolerability and efficacy of SC delivered triamcinolone further supports potential of SC small molecule suspensions as a clinically viable strategy for the treatment of chorioretinal diseases. Also highlighted are current limitations, key pharmacological considerations, and future opportunities to optimize the SC microinjector platform for safe, effective, and potentially long-acting drug delivery for the treatment of chorioretinal disorders.


Assuntos
Corioide , Triancinolona Acetonida , Fator D do Complemento/farmacologia , Calicreína Plasmática/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Suspensões
2.
Transl Vis Sci Technol ; 10(7): 19, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34128964

RESUMO

Purpose: Axitinib, a tyrosine kinase inhibitor, is a potent inhibitor of vascular endothelial growth factor (VEGF) receptors -1, -2 and -3. Suprachoroidal (SC) delivery of axitinib, combined with pan-VEGF inhibition activity of axitinib, has the potential to provide additional benefits compared to the current standard of care with intravitreal anti-VEGF-A agents. This study evaluated the ocular pharmacokinetics and systemic disposition of axitinib after SC administration in rabbits. Methods: Rabbits received axitinib as either a single SC injection (0.03, 0.10, 1.00, or 4.00 mg/eye; n = 4/group) or a single intravitreal injection (1 mg/eye; n = 4/group) in three separate studies. Axitinib concentrations were measured in several ocular compartments and in plasma at predetermined timepoints for up to 91 days. The pharmacokinetics parameters were estimated by noncompartmental analysis. Results: A single SC injection of axitinib suspension (1 mg/eye) resulted in an 11-fold higher mean axitinib exposure in the posterior eye cup, compared with intravitreal injection. Sustained levels of axitinib in the retinal pigment epithelium-choroid-sclera (RCS) and retina were observed throughout the duration of studies after a single SC axitinib injection (0.1 and 4.0 mg/eye), with low exposure in the vitreous humor, aqueous humor, and plasma. Axitinib levels in the RCS were 3 to 5 log orders higher than the reported in vitro (VEGF receptor-2 autophosphorylation inhibition) 50% inhibitory concentration value after 0.1 and 4.0 mg/eye dose levels throughout the 65-day and 91-day studies, respectively. Conclusions: This study demonstrates that SC axitinib suspension has a favorable pharmacokinetics profile with potential as a long-acting therapeutic candidate targeted to affected choroid and retinal pigment epithelium in neovascular age-related macular degeneration. Translational Relevance: Suprachoroidal axitinib suspension has potential to decrease the treatment burden in neovascular age-related macular degeneration, as a long-acting therapeutic candidate, and could yield greater efficacy, as a potent tyrosine kinase pan-VEGF inhibitor, compared with current standard anti-VEGF-A therapies.


Assuntos
Corioide , Fator A de Crescimento do Endotélio Vascular , Animais , Axitinibe , Injeções Intravítreas , Coelhos , Retina
3.
Transl Vis Sci Technol ; 9(13): 21, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33364076

RESUMO

Purpose: This study evaluated ocular tolerability and transfectability of nonviral DNA nanoparticles (DNPs) after microneedle-based suprachoroidal (SC) administration, in comparison to subretinal (SR) administration. Methods: The DNPs consisted of a single copy of plasmid DNA with a polyubiquitin C/luciferase transcriptional cassette compacted with 10 kDa PEG-substituted lysine 30-mer peptides (CK30PEG10k). New Zealand White rabbits (n = 4 per group) received a unilateral SC injection (0.1 mL via a microneedle technique) of ellipsoid-shaped DNPs, rod-shaped DNPs, or saline (negative control). A cohort of rabbits (n = 4) also received a single unilateral SR injection (0.05 mL via a transvitreal approach) of rod-shaped DNPs. At day 7, luciferase activity was measured in the retina and retinal pigment epithelium (RPE)-choroid via bioluminescence assay. A cohort of rabbits received a SC injection of analogous DNPs to assess spread of DNP injectate in the suprachoroidal space (SCS) via optical coherent tomography and histology. Results: Suprachoroidal injection of DNPs resulted in reversible opening of the SCS circumferentially and posteriorly and was generally well tolerated, with no significant ocular examination score changes, intraocular pressure abnormalities, or changes in electroretinography amplitudes on day 7 compared to the baseline. High luciferase activity was observed in the retina and RPE-choroid of eyes that received SC DNPs (rod and ellipsoid shape) and SR DNPs (rod shape) compared to controls. The mean luciferase activity in RPE-choroid and retina was comparable between SC and SR administrations. Transfection in the RPE-choroid was approximately 10-fold higher than in the retina after either SC or SR administration of DNPs. Conclusions: Suprachoroidal and SR administration of DNPs resulted in comparable transfection of retina and RPE-choroid. Translational Relevance: Suprachoroidal delivery of DNPs offers the potential to precisely target chorioretinal tissues while avoiding surgical risks associated with SR injection, and it may offer an office-based nonsurgical gene therapy option for the treatment of retinal diseases.


Assuntos
Nanopartículas , Epitélio Pigmentado da Retina , Animais , Corioide , DNA , Coelhos , Retina
4.
Expert Opin Investig Drugs ; 29(3): 237-244, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31985300

RESUMO

Introduction: Plasma kallikrein is a  mediator of vascular leakage and inflammation. Activation of plasma kallikrein can induce features of diabetic macular edema (DME) in preclinical models. Human vitreous shows elevated plasma kallikrein levels in patients with DME. Because of the incomplete response of some patients to anti-VEGF agents, and the treatment burden associated with frequent dosing, there is still considerable need for VEGF-independent targeted pathways.Areas covered: This review covers the role of plasma kallikrein in the pathogenesis of DME and the therapeutic potential of plasma kallikrein inhibitors. It discusses early clinical studies of plasma kallikrein pathway modulation for DME, which have been associated with some improvement in visual acuity but with limited improvement in macular edema. This review also highlights KVD001, which is furthest along the development pathway, THR-149, which has recently completed a phase 1 study, and oral agents under development.Expert opinion: Plasma kallikrein inhibitors have a potential role in the treatment of DME, with mixed functional/anatomic results in early clinical trials. Given the large unmet need in DME treatment, further studies are warranted.


Assuntos
Retinopatia Diabética/tratamento farmacológico , Edema Macular/tratamento farmacológico , Calicreína Plasmática/antagonistas & inibidores , Animais , Retinopatia Diabética/fisiopatologia , Desenvolvimento de Medicamentos , Drogas em Investigação/farmacologia , Humanos , Edema Macular/fisiopatologia , Calicreína Plasmática/metabolismo
5.
Mol Pharm ; 3(3): 329-39, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16749865

RESUMO

The objective of this research is to characterize a sodium-dependent multivitamin transporter (SMVT) in MDCK-MDR1 cells (Madin-Darby canine kidney cells transfected with the human MDR1 gene) and to investigate the feasibility of utilizing the MDCK-MDR1 cell line as an in vitro model to study the permeability of biotin-conjugated prodrugs of anti-HIV protease inhibitors. Mechanism of [3H]biotin uptake and transport was delineated. Transepithelial permeability of the biotin-conjugated prodrug, i.e., biotin-saquinavir, was also studied. Reverse transcription polymerase chain reaction (RT-PCR) was carried out to confirm the existence of SMVT in MDCK-MDR1 cells. Biotin uptake was Na+, pH, and temperature dependent, but energy independent. Uptake of biotin was found to be saturable with a Km of 13.0 microM, Vmax 21.5 of pmol min-1 (mg of protein)-1, and Kd of 0.12 microL min-1 (mg of protein)-1. Both apical and basal uptake and transepithelial transport of [3H]biotin showed that SMVT localized predominantly on the apical membrane of MDCK-MDR1 cells. [3H]Biotin uptake was inhibited by excess unlabeled biotin and its structural analogues, i.e., desthiolbiotin and valeric acid, and other vitamins such as lipoic acid and pantothenic acid, but not by acetic acid, benzoic acid, biotin methyl ester, and biocytin. Biotin-saquinavir caused lowering of [3H]biotin uptake, which indicates that it is recognized by SMVT. Apical to basal transport of [3H]biotin was also significantly inhibited in the presence of excess biotin or biotin-saquinavir. Transepithelial transport studies of biotin-saquinavir in MDCK-MDR1, wild type MDCK, and Caco-2 cells revealed that permeability of biotin-saquinavir was similar in all three cell lines. A band of SMVT mRNA at 862 bp was identified by RT-PCR. A sodium-dependent multivitamin transporter, SMVT, responsible for biotin uptake and transport, was identified and functionally characterized in MDCK-MDR1 cells. Therefore, the MDCK-MDR1 cell line may be utilized as an in vitro model to study the permeability of biotin-conjugated prodrugs such as HIV protease inhibitors.


Assuntos
Sistemas de Liberação de Medicamentos/estatística & dados numéricos , Simportadores/metabolismo , Animais , Biotina/farmacocinética , Células CACO-2/metabolismo , Linhagem Celular , Permeabilidade da Membrana Celular/efeitos dos fármacos , Cães , Interações Medicamentosas , Estudos de Viabilidade , Inibidores da Protease de HIV/farmacologia , Humanos , Pró-Fármacos/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saquinavir/farmacologia , Sódio/farmacologia , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA