Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Cancer ; 20(1): 1082, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33172421

RESUMO

BACKGROUND: The ability to detect tumor-specific biomarkers in real-time using optical imaging plays a critical role in preclinical studies aimed at evaluating drug safety and treatment response. In this study, we engineered an imaging platform capable of targeting different tumor biomarkers using a multi-colored library of nanoprobes. These probes contain rare-earth elements that emit light in the short-wave infrared (SWIR) wavelength region (900-1700 nm), which exhibits reduced absorption and scattering compared to visible and NIR, and are rendered biocompatible by encapsulation in human serum albumin. The spectrally distinct emissions of the holmium (Ho), erbium (Er), and thulium (Tm) cations that constitute the cores of these nanoprobes make them attractive candidates for optical molecular imaging of multiple disease biomarkers. METHODS: SWIR-emitting rare-earth-doped albumin nanocomposites (ReANCs) were synthesized using controlled coacervation, with visible light-emitting fluorophores additionally incorporated during the crosslinking phase for validation purposes. Specifically, HoANCs, ErANCs, and TmANCs were co-labeled with rhodamine-B, FITC, and Alexa Fluor 647 dyes respectively. These Rh-HoANCs, FITC-ErANCs, and 647-TmANCs were further conjugated with the targeting ligands daidzein, AMD3100, and folic acid respectively. Binding specificities of each nanoprobe to distinct cellular subsets were established by in vitro uptake studies. Quantitative whole-body SWIR imaging of subcutaneous tumor bearing mice was used to validate the in vivo targeting ability of these nanoprobes. RESULTS: Each of the three ligand-functionalized nanoprobes showed significantly higher uptake in the targeted cell line compared to untargeted probes. Increased accumulation of tumor-specific nanoprobes was also measured relative to untargeted probes in subcutaneous tumor models of breast (4175 and MCF-7) and ovarian cancer (SKOV3). Preferential accumulation of tumor-specific nanoprobes was also observed in tumors overexpressing targeted biomarkers in mice bearing molecularly-distinct bilateral subcutaneous tumors, as evidenced by significantly higher signal intensities on SWIR imaging. CONCLUSIONS: The results from this study show that tumors can be detected in vivo using a set of targeted multispectral SWIR-emitting nanoprobes. Significantly, these nanoprobes enabled imaging of biomarkers in mice bearing bilateral tumors with distinct molecular phenotypes. The findings from this study provide a foundation for optical molecular imaging of heterogeneous tumors and for studying the response of these complex lesions to targeted therapy.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Corantes Fluorescentes/química , Raios Infravermelhos , Nanopartículas/administração & dosagem , Imagem Óptica/métodos , Neoplasias Ovarianas/patologia , Animais , Apoptose , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/metabolismo , Proliferação de Células , Feminino , Humanos , Camundongos , Camundongos Nus , Nanopartículas/química , Neoplasias Ovarianas/diagnóstico por imagem , Neoplasias Ovarianas/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Med One ; 42019.
Artigo em Inglês | MEDLINE | ID: mdl-31592196

RESUMO

As a nascent and emerging field that holds great potential for precision oncology, nanotechnology has been envisioned to improve drug delivery and imaging capabilities through precise and efficient tumor targeting, safely sparing healthy normal tissue. In the clinic, nanoparticle formulations such as the first-generation Abraxane® in breast cancer, Doxil® for sarcoma, and Onivyde® for metastatic pancreatic cancer, have shown advancement in drug delivery while improving safety profiles. However, effective accumulation of nanoparticles at the tumor site is sub-optimal due to biological barriers that must be overcome. Nanoparticle delivery and retention can be altered through systematic design considerations in order to enhance passive accumulation or active targeting to the tumor site. In tumor niches where passive targeting is possible, modifications in the size and charge of nanoparticles play a role in their tissue accumulation. For niches in which active targeting is required, precision oncology research has identified targetable biomarkers, with which nanoparticle design can be altered through bioconjugation using antibodies, peptides, or small molecule agonists and antagonists. This review is structured to provide a better understanding of nanoparticle engineering design principles with emphasis on overcoming tumor-specific biological barriers.

3.
ACS Biomater Sci Eng ; 4(7): 2305-2363, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-30417087

RESUMO

Gene therapy is emerging as the next generation of therapeutic modality with United States Food and Drug Administration approved gene-engineered therapy for cancer and a rare eye-related disorder, but the challenge of real-time monitoring of on-target therapy response remains. In this study, we have designed a theranostic nanoparticle composed of shortwave-infrared-emitting rare-earth-doped nanoparticles (RENPs) capable of delivering genetic cargo and of real-time response monitoring. We showed that the cationic coating of RENPs with branched polyethylenimine (PEI) does not have a significant impact on cellular toxicity, which can be further reduced by selectively modifying the surface characteristics of the PEI coating using counter-ions and expanding their potential applications in photothermal therapy. We showed the tolerability and clearance of a bolus dose of RENPs@PEI in mice up to 7 days after particle injection in addition to the RENPs@PEI ability to distinctively discern lung tumor lesions in a breast cancer mouse model with an excellent signal-to-noise ratio. We also showed the availability of amine functional groups in the collapsed PEI chain conformation on RENPs, which facilitates the loading of genetic cargo that hybridizes with target gene in an in vitro cancer model. The real-time monitoring and delivery of gene therapy at on-target sites will enable the success of an increased number of gene- and cell-therapy products in clinical trials.

4.
J Biomed Opt ; 23(3): 1-4, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29564865

RESUMO

Rare-earth-doped nanocomposites have appealing optical properties for use as biomedical contrast agents, but few systems exist for imaging these materials. We describe the design and characterization of (i) a preclinical system for whole animal in vivo imaging and (ii) an integrated optical coherence tomography/confocal microscopy system for high-resolution imaging of ex vivo tissues. We demonstrate these systems by administering erbium-doped nanocomposites to a murine model of metastatic breast cancer. Short-wave infrared emissions were detected in vivo and in whole organ imaging ex vivo. Visible upconversion emissions and tissue autofluorescence were imaged in biopsy specimens, alongside optical coherence tomography imaging of tissue microstructure. We anticipate that this work will provide guidance for researchers seeking to image these nanomaterials across a wide range of biological models.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Metais Terras Raras/química , Microscopia Confocal/métodos , Nanocompostos/química , Imagem Óptica/métodos , Animais , Desenho de Equipamento , Feminino , Raios Infravermelhos , Fígado/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Camundongos , Camundongos Nus , Microscopia Confocal/instrumentação , Imagem Óptica/instrumentação , Imagem Corporal Total
5.
Nat Biomed Eng ; 1: 993-1003, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29531851

RESUMO

The identification and molecular profiling of early metastases remains a major challenge in cancer diagnostics and therapy. Most in vivo imaging methods fail to detect small cancerous lesions, a problem that is compounded by the distinct physical and biological barriers associated with different metastatic niches. Here, we show that intravenously injected rare-earth-doped albumin-encapsulated nanoparticles emitting short-wave infrared light (SWIR) can detect targeted metastatic lesions in vivo, allowing for the longitudinal tracking of multi-organ metastases. In a murine model of basal human breast cancer, the nanoprobes enabled whole-body SWIR detection of adrenal gland microlesions and bone lesions that were undetectable via contrast-enhanced magnetic resonance imaging (CE-MRI) as early as, respectively, three weeks and five weeks post-inoculation. Whole-body SWIR imaging of nanoprobes functionalized to differentially target distinct metastatic sites and administered to a biomimetic murine model of human breast cancer resolved multi-organ metastases that showed varied molecular profiles at the lungs, adrenal glands and bones. Real-time surveillance of lesions in multiple organs should facilitate pre-therapy and post-therapy monitoring in preclinical settings.

6.
Small ; 11(47): 6347-57, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26514367

RESUMO

Realizing the promise of precision medicine in cancer therapy depends on identifying and tracking cancerous growths to maximize treatment options and improve patient outcomes. This goal of early detection remains unfulfilled by current clinical imaging techniques that fail to detect lesions due to their small size and suborgan localization. With proper probes, optical imaging techniques can overcome this by identifying the molecular phenotype of tumors at both macroscopic and microscopic scales. In this study, the first use of nanophotonic short wave infrared technology is proposed to molecularly phenotype small lesions for more sensitive detection. Here, human serum albumin encapsulated rare-earth nanoparticles (ReANCs) with ligands for targeted lesion imaging are designed. AMD3100, an antagonist to CXCR4 (a classic marker of cancer metastasis) is adsorbed onto ReANCs to form functionalized ReANCs (fReANCs). fReANCs are able to preferentially accumulate in receptor positive lesions when injected intraperitoneally in a subcutaneous tumor model. fReANCs can also target subtissue microlesions at a maximum depth of 10.5 mm in a lung metastatic model of breast cancer. Internal lesions identified with fReANCs are 2.25 times smaller than those detected with ReANCs. Thus, an integrated nanoprobe detection platform is presented, which allows target-specific identification of subtissue cancerous lesions.


Assuntos
Raios Infravermelhos , Neoplasias Pulmonares/patologia , Nanopartículas/química , Micrometástase de Neoplasia/diagnóstico , Imagem Óptica/métodos , Ondas de Rádio , Receptores CXCR4/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Metais Terras Raras/química , Camundongos Nus , Especificidade de Órgãos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA