Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
PLoS Comput Biol ; 19(11): e1011611, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38011282

RESUMO

For the long term control of an infectious disease such as COVID-19, it is crucial to identify the most likely individuals to become infected and the role that differences in demographic characteristics play in the observed patterns of infection. As high-volume surveillance winds down, testing data from earlier periods are invaluable for studying risk factors for infection in detail. Observed changes in time during these periods may then inform how stable the pattern will be in the long term. To this end we analyse the distribution of cases of COVID-19 across Scotland in 2021, where the location (census areas of order 500-1,000 residents) and reporting date of cases are known. We consider over 450,000 individually recorded cases, in two infection waves triggered by different lineages: B.1.1.529 ("Omicron") and B.1.617.2 ("Delta"). We use random forests, informed by measures of geography, demography, testing and vaccination. We show that the distributions are only adequately explained when considering multiple explanatory variables, implying that case heterogeneity arose from a combination of individual behaviour, immunity, and testing frequency. Despite differences in virus lineage, time of year, and interventions in place, we find the risk factors remained broadly consistent between the two waves. Many of the observed smaller differences could be reasonably explained by changes in control measures.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , Fatores de Risco , Demografia
2.
PLoS One ; 18(8): e0287397, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37585389

RESUMO

A critical factor in infectious disease control is the risk of an outbreak overwhelming local healthcare capacity. The overall demand on healthcare services will depend on disease severity, but the precise timing and size of peak demand also depends on the time interval (or clinical time delay) between initial infection, and development of severe disease. A broader distribution of intervals may draw that demand out over a longer period, but have a lower peak demand. These interval distributions are therefore important in modelling trajectories of e.g. hospital admissions, given a trajectory of incidence. Conversely, as testing rates decline, an incidence trajectory may need to be inferred through the delayed, but relatively unbiased signal of hospital admissions. Healthcare demand has been extensively modelled during the COVID-19 pandemic, where localised waves of infection have imposed severe stresses on healthcare services. While the initial acute threat posed by this disease has since subsided with immunity buildup from vaccination and prior infection, prevalence remains high and waning immunity may lead to substantial pressures for years to come. In this work, then, we present a set of interval distributions, for COVID-19 cases and subsequent severe outcomes; hospital admission, ICU admission, and death. These may be used to model more realistic scenarios of hospital admissions and occupancy, given a trajectory of infections or cases. We present a method for obtaining empirical distributions using COVID-19 outcomes data from Scotland between September 2020 and January 2022 (N = 31724 hospital admissions, N = 3514 ICU admissions, N = 8306 mortalities). We present separate distributions for individual age, sex, and deprivation of residing community. While the risk of severe disease following COVID-19 infection is substantially higher for the elderly and those residing in areas of high deprivation, the length of stay shows no strong dependence, suggesting that severe outcomes are equally severe across risk groups. As Scotland and other countries move into a phase where testing is no longer abundant, these intervals may be of use for retrospective modelling of patterns of infection, given data on severe outcomes.


Assuntos
COVID-19 , Humanos , Idoso , COVID-19/epidemiologia , Estudos Retrospectivos , Pandemias , Hospitalização , Escócia/epidemiologia
3.
Front Vet Sci ; 10: 1049633, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37456963

RESUMO

Livestock movements contribute to the spread of several infectious diseases. Data on livestock movements can therefore be harnessed to guide policy on targeted interventions for controlling infectious livestock diseases, including Rift Valley fever (RVF)-a vaccine-preventable arboviral fever. Detailed livestock movement data are known to be useful for targeting control efforts including vaccination. These data are available in many countries, however, such data are generally lacking in others, including many in East Africa, where multiple RVF outbreaks have been reported in recent years. Available movement data are imperfect, and the impact of this uncertainty in the utility of movement data on informing targeting of vaccination is not fully understood. Here, we used a network simulation model to describe the spread of RVF within and between 398 wards in northern Tanzania connected by cattle movements, on which we evaluated the impact of targeting vaccination using imperfect movement data. We show that pre-emptive vaccination guided by only market movement permit data could prevent large outbreaks. Targeted control (either by the risk of RVF introduction or onward transmission) at any level of imperfect movement information is preferred over random vaccination, and any improvement in information reliability is advantageous to their effectiveness. Our modeling approach demonstrates how targeted interventions can be effectively used to inform animal and public health policies for disease control planning. This is particularly valuable in settings where detailed data on livestock movements are either unavailable or imperfect due to resource limitations in data collection, as well as challenges associated with poor compliance.

4.
Microb Genom ; 9(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37227264

RESUMO

Bovine tuberculosis (bTB) is a costly, epidemiologically complex, multi-host, endemic disease. Lack of understanding of transmission dynamics may undermine eradication efforts. Pathogen whole-genome sequencing improves epidemiological inferences, providing a means to determine the relative importance of inter- and intra-species host transmission for disease persistence. We sequenced an exceptional data set of 619 Mycobacterium bovis isolates from badgers and cattle in a 100 km2 bTB 'hotspot' in Northern Ireland. Historical molecular subtyping data permitted the targeting of an endemic pathogen lineage, whose long-term persistence provided a unique opportunity to study disease transmission dynamics in unparalleled detail. Additionally, to assess whether badger population genetic structure was associated with the spatial distribution of pathogen genetic diversity, we microsatellite genotyped hair samples from 769 badgers trapped in this area. Birth death models and TransPhylo analyses indicated that cattle were likely driving the local epidemic, with transmission from cattle to badgers being more common than badger to cattle. Furthermore, the presence of significant badger population genetic structure in the landscape was not associated with the spatial distribution of M. bovis genetic diversity, suggesting that badger-to-badger transmission is not playing a major role in transmission dynamics. Our data were consistent with badgers playing a smaller role in transmission of M. bovis infection in this study site, compared to cattle. We hypothesize, however, that this minor role may still be important for persistence. Comparison to other areas suggests that M. bovis transmission dynamics are likely to be context dependent, with the role of wildlife being difficult to generalize.


Assuntos
Mustelidae , Mycobacterium bovis , Tuberculose Bovina , Animais , Bovinos , Mycobacterium bovis/genética , Mustelidae/microbiologia , Irlanda do Norte/epidemiologia , Tuberculose Bovina/microbiologia , Genômica
5.
J Theor Biol ; 558: 111333, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36347306

RESUMO

The proportion of SARS-CoV-2 infections ascertained through healthcare and community testing is generally unknown and expected to vary depending on natural factors and changes in test-seeking behaviour. Here we use population surveillance data and reported daily case numbers in the United Kingdom to estimate the rate of case ascertainment. We mathematically describe the relationship between the ascertainment rate, the daily number of reported cases, population prevalence, and the sensitivity of PCR and Lateral Flow tests as a function time since exposure. Applying this model to the data, we estimate that 20%-40% of SARS-CoV-2 infections in the UK were ascertained with a positive test with results varying by time and region. Cases of the Alpha variant were ascertained at a higher rate than the wild type variants circulating in the early pandemic, and higher again for the Delta variant and Omicron BA.1 sub-lineage, but lower for the BA.2 sub-lineage. Case ascertainment was higher in adults than in children. We further estimate the daily number of infections and compare this to mortality data to estimate that the infection fatality rate increased by a factor of 3 during the period dominated by the Alpha variant, and declined in line with the distribution of vaccines. This manuscript was submitted as part of a theme issue on "Modelling COVID-19 and Preparedness for Future Pandemics".


Assuntos
COVID-19 , Adulto , Criança , Humanos , COVID-19/diagnóstico , COVID-19/epidemiologia , SARS-CoV-2 , Reino Unido/epidemiologia , Atenção à Saúde
6.
Nat Ecol Evol ; 6(10): 1414-1422, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36138206

RESUMO

Potential interactions among co-circulating viral strains in host populations are often overlooked in the study of virus transmission. However, these interactions probably shape transmission dynamics by influencing host immune responses or altering the relative fitness among co-circulating strains. In this Review, we describe multi-strain dynamics from ecological and evolutionary perspectives, outline scales in which multi-strain dynamics occur and summarize important immunological, phylogenetic and mathematical modelling approaches used to quantify interactions among strains. We also discuss how host-pathogen interactions influence the co-circulation of pathogens. Finally, we highlight outstanding questions and knowledge gaps in the current theory and study of ecological and evolutionary dynamics of multi-strain viruses.


Assuntos
Evolução Biológica , Vírus de RNA , Interações Hospedeiro-Patógeno , Filogenia
7.
Front Vet Sci ; 9: 846156, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072395

RESUMO

Background: Bovine viral diarrhea (BVD) virus is one of the most problematic infectious pathogens for cattle. Since 2013, a mandatory BVD eradication program has successfully reduced the number of infected cattle living on Scottish farms; however, England remains at high prevalence and presents a risk to Scotland through animal movement. Methods: We analyze cattle movements in the UK from 2008 to 2017 and recorded incidence of BVD in Scotland from 2017 to 2020. To simulate BVD reintroduction into Scotland, we developed an epidemiological model that combines transmission between cattle and animal movements between farms. A total of four control strategies were implemented in the model: no intervention, import restriction, targeted vaccination, and combined strategy. Results: During the course of the eradication scheme, movements into Scotland became increasingly distributed in regions close to the England-Scotland border. The prevalence of BVD in this region decreased at a slower rate than the rest of Scotland during the eradication scheme. Our model showed that the change in the prevalence is expected, given that the change in the patterns of movement and if vaccination is targeted to the border areas that decrease in the prevalence will be seen throughout the whole of Scotland. Conclusion: Scottish farms are susceptible to BVD virus reintroduction through animal imports from non-BVD-free nations with farms in border areas being the most vulnerable. Protecting the border regions provides direct and indirect protection to the rest of Scottish farms by interrupting chains of transmission.

8.
Wellcome Open Res ; 7: 161, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35865220

RESUMO

Background: Mobility restrictions prevent the spread of infections to disease-free areas, and early in the coronavirus disease 2019 (COVID-19) pandemic, most countries imposed severe restrictions on mobility as soon as it was clear that containment of local outbreaks was insufficient to control spread. These restrictions have adverse impacts on the economy and other aspects of human health, and it is important to quantify their impact for evaluating their future value. Methods: Here we develop Scotland Coronavirus transmission Model (SCoVMod), a model for COVID-19 in Scotland, which presents unusual challenges because of its diverse geography and population conditions. Our fitted model captures spatio-temporal patterns of mortality in the first phase of the epidemic to a fine geographical scale. Results: We find that lockdown restrictions reduced transmission rates down to an estimated 12\% of its pre-lockdown rate. We show that, while the timing of COVID-19 restrictions influences the role of the transmission rate on the number of COVID-related deaths, early reduction in long distance movements does not. However, poor health associated with deprivation has a considerable association with mortality; the Council Area (CA) with the greatest health-related deprivation was found to have a mortality rate 2.45 times greater than the CA with the lowest health-related deprivation considering all deaths occurring outside of carehomes. Conclusions: We find that in even an early epidemic with poor case ascertainment, a useful spatially explicit model can be fit with meaningful parameters based on the spatio-temporal distribution of death counts. Our simple approach is useful to strategically examine trade-offs between travel related restrictions and physical distancing, and the effect of deprivation-related factors on outcomes.

9.
Prev Vet Med ; 197: 105501, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34624567

RESUMO

Streptococcus agalactiae, also known as group B Streptococcus (GBS), is a pathogen of humans and animals. It is an important cause of mastitis in dairy cattle, causing decreased milk quality and quantity. Denmark is the only country to have implemented a national surveillance and control campaign for GBS in dairy cattle. After a significant decline in the 20th century, prevalence has increased in the 21st century. Using a unique combination of national surveillance, cattle movement data and molecular typing, we tested the hypothesis that transmission mechanisms differ between GBS strains that are almost exclusive to cattle and those that affect humans as well as cattle, which would have implications for control recommendations. Three types of S. agalactiae, sequence type (ST) 1, ST23 and ST103 were consistently the most frequent strains among isolates obtained through the national surveillance programme from 2009 to 2011. Herds infected with ST103, which is common in cattle but rarely found in people in Europe, were spatially clustered throughout the study period and across spatial scales. By contrast, strains that are also commonly found in humans, ST1 and ST23, showed no spatial clustering in most or any years of the study, respectively. Introduction of cattle from a positive herd was associated with increased risk of infection by S. agalactiae in the next year (risk ratio of 2.9 and 4.7 for 2009-2010 and 2010-2011, respectively). Moreover, mean exposure to infection was significantly higher for newly infected herds and significantly lower for persistently susceptible herds, as compared to random simulated networks with the same properties, which suggests strong association between the cattle movement network and new infections. At strain-level, new infections with ST1 between 2009 and 2010 were significantly associated with cattle movements, while other strains showed only some degree of association. Sharing of veterinary services, which may serve as proxy for local or regional contacts at a range of scales, was not significantly associated with increased risk of introduction of S. agalactiae or one of the three predominant strains on a farm. Our findings support the reinstatement of restrictions on cattle movements from S. agalactiae positive herds, which came into effect in 2018, but provide insufficient evidence to support strain-specific control recommendations.


Assuntos
Doenças dos Bovinos , Mastite Bovina , Infecções Estreptocócicas , Animais , Bovinos , Doenças dos Bovinos/epidemiologia , Feminino , Mastite Bovina/epidemiologia , Leite , Tipagem de Sequências Multilocus/veterinária , Infecções Estreptocócicas/epidemiologia , Infecções Estreptocócicas/veterinária , Streptococcus agalactiae/genética
10.
Vaccines (Basel) ; 9(6)2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198904

RESUMO

The genetic diversity and frequent emergence of novel genetic variants of porcine reproductive and respiratory syndrome virus type-2 (PRRSV) hinders control efforts, yet drivers of macro-evolutionary patterns of PRRSV remain poorly documented. Utilizing a comprehensive database of >20,000 orf5 sequences, our objective was to classify variants according to the phylogenetic structure of PRRSV co-circulating in the U.S., quantify evolutionary dynamics of sub-lineage emergence, and describe potential antigenic differences among sub-lineages. We subdivided the most prevalent lineage (Lineage 1, accounting for approximately 60% of available sequences) into eight sub-lineages. Bayesian coalescent SkyGrid models were used to estimate each sub-lineage's effective population size over time. We show that a new sub-lineage emerged every 1 to 4 years and that the time between emergence and peak population size was 4.5 years on average (range: 2-8 years). A pattern of sequential dominance of different sub-lineages was identified, with a new dominant sub-lineage replacing its predecessor approximately every 3 years. Consensus amino acid sequences for each sub-lineage differed in key GP5 sites related to host immunity, suggesting that sub-lineage turnover may be linked to immune-mediated competition. This has important implications for understanding drivers of genetic diversity and emergence of new PRRSV variants in the U.S.

11.
PLoS Comput Biol ; 17(6): e1009005, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34170901

RESUMO

Multi-host pathogens are particularly difficult to control, especially when at least one of the hosts acts as a hidden reservoir. Deep sequencing of densely sampled pathogens has the potential to transform this understanding, but requires analytical approaches that jointly consider epidemiological and genetic data to best address this problem. While there has been considerable success in analyses of single species systems, the hidden reservoir problem is relatively under-studied. A well-known exemplar of this problem is bovine Tuberculosis, a disease found in British and Irish cattle caused by Mycobacterium bovis, where the Eurasian badger has long been believed to act as a reservoir but remains of poorly quantified importance except in very specific locations. As a result, the effort that should be directed at controlling disease in badgers is unclear. Here, we analyse densely collected epidemiological and genetic data from a cattle population but do not explicitly consider any data from badgers. We use a simulation modelling approach to show that, in our system, a model that exploits available cattle demographic and herd-to-herd movement data, but only considers the ability of a hidden reservoir to generate pathogen diversity, can be used to choose between different epidemiological scenarios. In our analysis, a model where the reservoir does not generate any diversity but contributes to new infections at a local farm scale are significantly preferred over models which generate diversity and/or spread disease at broader spatial scales. While we cannot directly attribute the role of the reservoir to badgers based on this analysis alone, the result supports the hypothesis that under current cattle control regimes, infected cattle alone cannot sustain M. bovis circulation. Given the observed close phylogenetic relationship for the bacteria taken from cattle and badgers sampled near to each other, the most parsimonious hypothesis is that the reservoir is the infected badger population. More broadly, our approach demonstrates that carefully constructed bespoke models can exploit the combination of genetic and epidemiological data to overcome issues of extreme data bias, and uncover important general characteristics of transmission in multi-host pathogen systems.


Assuntos
Simulação por Computador , Reservatórios de Doenças , Mycobacterium bovis/isolamento & purificação , Filogenia , Tuberculose Bovina/transmissão , Animais , Bovinos , Mustelidae/microbiologia , Mycobacterium bovis/classificação , Mycobacterium bovis/genética , Tuberculose Bovina/microbiologia
12.
Sci Rep ; 10(1): 21980, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33319838

RESUMO

Established methods for whole-genome-sequencing (WGS) technology allow for the detection of single-nucleotide polymorphisms (SNPs) in the pathogen genomes sourced from host samples. The information obtained can be used to track the pathogen's evolution in time and potentially identify 'who-infected-whom' with unprecedented accuracy. Successful methods include 'phylodynamic approaches' that integrate evolutionary and epidemiological data. However, they are typically computationally intensive, require extensive data, and are best applied when there is a strong molecular clock signal and substantial pathogen diversity. To determine how much transmission information can be inferred when pathogen genetic diversity is low and metadata limited, we propose an analytical approach that combines pathogen WGS data and sampling times from infected hosts. It accounts for 'between-scale' processes, in particular within-host pathogen evolution and between-host transmission. We applied this to a well-characterised population with an endemic Mycobacterium bovis (the causative agent of bovine/zoonotic tuberculosis, bTB) infection. Our results show that, even with such limited data and low diversity, the computation of the transmission probability between host pairs can help discriminate between likely and unlikely infection pathways and therefore help to identify potential transmission networks. However, the method can be sensitive to assumptions about within-host evolution.


Assuntos
Bovinos/microbiologia , Modelos Biológicos , Mustelidae/microbiologia , Mycobacterium bovis/fisiologia , Tuberculose/transmissão , Tuberculose/veterinária , Animais , Probabilidade , Tuberculose/epidemiologia , Tuberculose/microbiologia
13.
J R Soc Interface ; 17(173): 20200775, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33292095

RESUMO

Controlling the regional re-emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) after its initial spread in ever-changing personal contact networks and disease landscapes is a challenging task. In a landscape context, contact opportunities within and between populations are changing rapidly as lockdown measures are relaxed and a number of social activities re-activated. Using an individual-based metapopulation model, we explored the efficacy of different control strategies across an urban-rural gradient in Wales, UK. Our model shows that isolation of symptomatic cases or regional lockdowns in response to local outbreaks have limited efficacy unless the overall transmission rate is kept persistently low. Additional isolation of non-symptomatic infected individuals, who may be detected by effective test-and-trace strategies, is pivotal to reducing the overall epidemic size over a wider range of transmission scenarios. We define an 'urban-rural gradient in epidemic size' as a correlation between regional epidemic size and connectivity within the region, with more highly connected urban populations experiencing relatively larger outbreaks. For interventions focused on regional lockdowns, the strength of such gradients in epidemic size increased with higher travel frequencies, indicating a reduced efficacy of the control measure in the urban regions under these conditions. When both non-symptomatic and symptomatic individuals are isolated or regional lockdown strategies are enforced, we further found the strongest urban-rural epidemic gradients at high transmission rates. This effect was reversed for strategies targeted at symptomatic individuals only. Our results emphasize the importance of test-and-trace strategies and maintaining low transmission rates for efficiently controlling SARS-CoV-2 spread, both at landscape scale and in urban areas.


Assuntos
COVID-19/prevenção & controle , Controle de Doenças Transmissíveis/métodos , Pandemias/prevenção & controle , SARS-CoV-2 , Infecções Assintomáticas/epidemiologia , COVID-19/epidemiologia , COVID-19/transmissão , Simulação por Computador , Busca de Comunicante , Humanos , Modelos Biológicos , Distanciamento Físico , População Rural , Interação Social , População Urbana , País de Gales/epidemiologia
14.
Proc Math Phys Eng Sci ; 476(2242): 20190837, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33214756

RESUMO

We introduce a game inspired by the challenges of disease management in livestock farming and the transmission of endemic disease through a trade network. Success in this game comes from balancing the cost of buying new stock with the risk that it will be carrying some disease. When players follow a simple memory-based strategy we observe a spontaneous separation into two groups corresponding to players with relatively high, or low, levels of infection. By modelling the dynamics of both the disease and the formation and breaking of trade relationships, we derive the conditions for which this separation occurs as a function of the transmission rate and the threshold level of acceptable disease for each player. When interactions in the game are restricted to players that neighbour each other in a small-world network, players tend to have similar levels of infection as their neighbours. We conclude that success in economic-epidemiological systems can originate from misfortune and geographical circumstances as well as by innate differences in personal attitudes towards risk.

15.
Microb Genom ; 6(8)2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32553050

RESUMO

Control of bovine tuberculosis (bTB), caused by Mycobacterium bovis, in the Republic of Ireland costs €84 million each year. Badgers are recognized as being a wildlife source for M. bovis infection of cattle. Deer are thought to act as spillover hosts for infection; however, population density is recognized as an important driver in shifting their epidemiological role, and deer populations across the country have been increasing in density and range. County Wicklow represents one specific area in the Republic of Ireland with a high density of deer that has had consistently high bTB prevalence for over a decade, despite control operations in both cattle and badgers. Our research used whole-genome sequencing of M. bovis sourced from infected cattle, deer and badgers in County Wicklow to evaluate whether the epidemiological role of deer could have shifted from spillover host to source. Our analyses reveal that cattle and deer share highly similar M. bovis strains, suggesting that transmission between these species is occurring in the area. In addition, the high level of diversity observed in the sampled deer population suggests deer may be acting as a source of infection for local cattle populations. These findings have important implications for the control and ultimate eradication of bTB in Ireland.


Assuntos
Cervos/microbiologia , Mustelidae/microbiologia , Mycobacterium bovis/genética , Tuberculose Bovina , Animais , Bovinos/microbiologia , Genômica , Irlanda/epidemiologia , Prevalência , Tuberculose Bovina/epidemiologia , Tuberculose Bovina/microbiologia , Tuberculose Bovina/transmissão , Sequenciamento Completo do Genoma
16.
Proc Biol Sci ; 286(1894): 20182351, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30963872

RESUMO

The complex transmission ecologies of vector-borne and zoonotic diseases pose challenges to their control, especially in changing landscapes. Human incidence of zoonotic malaria ( Plasmodium knowlesi) is associated with deforestation although mechanisms are unknown. Here, a novel application of a method for predicting disease occurrence that combines machine learning and statistics is used to identify the key spatial scales that define the relationship between zoonotic malaria cases and environmental change. Using data from satellite imagery, a case-control study, and a cross-sectional survey, predictive models of household-level occurrence of P. knowlesi were fitted with 16 variables summarized at 11 spatial scales simultaneously. The method identified a strong and well-defined peak of predictive influence of the proportion of cleared land within 1 km of households on P. knowlesi occurrence. Aspect (1 and 2 km), slope (0.5 km) and canopy regrowth (0.5 km) were important at small scales. By contrast, fragmentation of deforested areas influenced P. knowlesi occurrence probability most strongly at large scales (4 and 5 km). The identification of these spatial scales narrows the field of plausible mechanisms that connect land use change and P. knowlesi, allowing for the refinement of disease occurrence predictions and the design of spatially-targeted interventions.


Assuntos
Monitoramento Epidemiológico , Florestas , Aprendizado de Máquina , Malária/epidemiologia , Zoonoses/epidemiologia , Animais , Estudos de Casos e Controles , Estudos Transversais , Agricultura Florestal , Humanos , Malásia/epidemiologia , Modelos Estatísticos , Modelos Teóricos , Plasmodium knowlesi/fisiologia , Tecnologia de Sensoriamento Remoto , Astronave , Análise Espacial
17.
Mol Ecol ; 28(9): 2192-2205, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30807679

RESUMO

The role of wildlife in the persistence and spread of livestock diseases is difficult to quantify and control. These difficulties are exacerbated when several wildlife species are potentially involved. Bovine tuberculosis (bTB), caused by Mycobacterium bovis, has experienced an ecological shift in Michigan, with spillover from cattle leading to an endemically infected white-tailed deer (deer) population. It has potentially substantial implications for the health and well-being of both wildlife and livestock and incurs a significant economic cost to industry and government. Deer are known to act as a reservoir of infection, with evidence of M. bovis transmission to sympatric elk and cattle populations. However, the role of elk in the circulation of M. bovis is uncertain; they are few in number, but range further than deer, so may enable long distance spread. Combining Whole Genome Sequences (WGS) for M. bovis isolates from exceptionally well-observed populations of elk, deer and cattle with spatiotemporal locations, we use spatial and Bayesian phylogenetic analyses to show strong spatiotemporal admixture of M. bovis isolates. Clustering of bTB in elk and cattle suggests either intraspecies transmission within the two populations, or exposure to a common source. However, there is no support for significant pathogen transfer amongst elk and cattle, and our data are in accordance with existing evidence that interspecies transmission in Michigan is likely only maintained by deer. This study demonstrates the value of whole genome population studies of M. bovis transmission at the wildlife-livestock interface, providing insights into bTB management in an endemic system.


Assuntos
Cervos/microbiologia , Mycobacterium bovis/genética , Tuberculose Bovina/transmissão , Tuberculose/veterinária , Animais , Bovinos , Interações Hospedeiro-Patógeno , Gado/microbiologia , Michigan , Mycobacterium bovis/isolamento & purificação , Mycobacterium bovis/patogenicidade , Filogenia , Análise Espaço-Temporal , Tuberculose/transmissão , Tuberculose Bovina/prevenção & controle , Sequenciamento Completo do Genoma
18.
Prev Vet Med ; 157: 8-18, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30086853

RESUMO

The movements of livestock between premises and markets can be characterised as a dynamic network where the structure of the network itself can critically impact the transmission dynamics of many infectious diseases. As evidenced by the 2001 foot-and-mouth disease (FMD) epidemic in the UK, this can involve transmission over large geographical distances and can result in major economic loss. One consequence of the FMD epidemic was the introduction of mandatory livestock movement restrictions: a 13-day standstill in Scotland for cattle and sheep after moving livestock onto a farm (allowing many exemptions) and a 6-day standstill for cattle and sheep in England and Wales (with minor exemptions, e.g. direct movements to slaughter). Such standstills are known to be effective but commercial considerations result in pressures to relax them. When contemplating legislative changes such as a change in length of movement restrictions we need to consider the consequent effect these could have on the emergent properties of the system, i.e. the network structure itself. In this study, we investigate how disease dynamics change when the local contact structure of the recorded livestock movement network in Scotland is altered through rewiring movements between premises. The network rewiring used here changes the structure of the recorded trade network through a combination of altered movement restrictions and redirection of movements between holdings and markets to avoid nonsensical activity (e.g. movements to markets on days when they are inactive) while conserving other characteristics (e.g. movement date as closely as possible and market sales of the correct animal production type). Rewiring results in networks with higher clustering coefficients and lower network density. The impact of rewiring on a hypothetical foot-and-mouth disease outbreak in Scotland was assessed by stochastic simulation, considering scenarios with and without exemptions to the standstill rules. As expected, rewiring leads to a decrease in outbreak size and - if standstill exemptions are prohibited - higher probability of smaller outbreaks. Without exemptions, a shorter movement standstill is almost as effective as a longer standstill period, indicating that a simpler biosecurity system would offer minimal additional risk for FMD. These results suggest that explicitly manipulating the contact network structure in a sensible way has the potential to significantly impact disease control.


Assuntos
Doenças dos Bovinos/transmissão , Febre Aftosa/transmissão , Doenças dos Ovinos/transmissão , Meios de Transporte , Animais , Bovinos , Doenças dos Bovinos/epidemiologia , Surtos de Doenças/veterinária , Inglaterra , Febre Aftosa/epidemiologia , Escócia , Ovinos , Doenças dos Ovinos/epidemiologia , País de Gales
19.
Parasitology ; 145(1): 101-110, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28345507

RESUMO

Plasmodium knowlesi is increasingly recognized as a major cause of malaria in Southeast Asia. Anopheles leucosphyrous group mosquitoes transmit the parasite and natural hosts include long-tailed and pig-tailed macaques. Despite early laboratory experiments demonstrating successful passage of infection between humans, the true role that humans play in P. knowlesi epidemiology remains unclear. The threat posed by its introduction into immunologically naïve populations is unknown despite being a public health priority for this region. A two-host species mathematical model was constructed to analyse this threat. Global sensitivity analysis using Monte Carlo methods highlighted the biological processes of greatest influence to transmission. These included parameters known to be influential in classic mosquito-borne disease models (e.g. vector longevity); however, interesting ecological components that are specific to this system were also highlighted: while local vectors likely have intrinsic preferences for certain host species, how plastic these preferences are, and how this is shaped by local conditions, are key determinants of parasite transmission potential. Invasion analysis demonstrates that this behavioural plasticity can qualitatively impact the probability of an epidemic sparked by imported infection. Identifying key vector sub/species and studying their biting behaviours constitute important next steps before models can better assist in strategizing disease control.


Assuntos
Anopheles/fisiologia , Macaca , Malária/transmissão , Malária/veterinária , Doenças dos Macacos/transmissão , Mosquitos Vetores/fisiologia , Plasmodium knowlesi/fisiologia , Animais , Anopheles/parasitologia , Interações Hospedeiro-Parasita , Humanos , Malária/parasitologia , Modelos Biológicos , Doenças dos Macacos/parasitologia , Método de Monte Carlo , Mosquitos Vetores/parasitologia
20.
Front Vet Sci ; 4: 155, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29021983

RESUMO

Process models that focus on explicitly representing biological mechanisms are increasingly important in disease ecology and animal health research. However, the large number of process modelling approaches makes it difficult to decide which is most appropriate for a given disease system and research question. Here, we discuss different motivations for using process models and present an integrated conceptual analysis that can be used to guide the construction of infectious disease process models and comparisons between them. Our presentation complements existing work by clarifying the major differences between modelling approaches and their relationship with the biological characteristics of the epidemiological system. We first discuss distinct motivations for using process models in epidemiological research, identifying the key steps in model design and use associated with each. We then present a conceptual framework for guiding model construction and comparison, organised according to key aspects of epidemiological systems. Specifically, we discuss the number and type of disease states, whether to focus on individual hosts (e.g., cows) or groups of hosts (e.g., herds or farms), how space or host connectivity affect disease transmission, whether demographic and epidemiological processes are periodic or can occur at any time, and the extent to which stochasticity is important. We use foot-and-mouth disease and bovine tuberculosis in cattle to illustrate our discussion and support explanations of cases in which different models are used to address similar problems. The framework should help those constructing models to structure their approach to modelling decisions and facilitate comparisons between models in the literature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA