Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 351: 141162, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38218235

RESUMO

The early detection of upcoming disease outbreaks is essential to avoid both health and economic damage. The last four years of COVID-19 pandemic have proven wastewater-based epidemiology is a reliable system for monitoring the spread of SARS-CoV-2, a causative agent of COVID-19, in an urban population. As this monitoring enables the identification of the prevalence of spreading variants of SARS-CoV-2, it could provide a critical tool in the fight against this viral disease. In this study, we evaluated the presence of variants and subvariants of SARS-CoV-2 in Prague wastewater using nanopore-based sequencing. During August 2021, the data clearly showed that the number of identified SARS-CoV-2 RNA copies increased in the wastewater earlier than in clinical samples indicating the upcoming wave of the Delta variant. New SARS-CoV-2 variants consistently prevailed in wastewater samples around a month after they already prevailed in clinical samples. We also analyzed wastewater samples from smaller sub-sewersheds of Prague and detected significant differences in SARS-CoV-2 lineage progression dynamics among individual localities studied, e.g., suggesting faster prevalence of new variants among the sites with highest population density and mobility.


Assuntos
COVID-19 , Nanoporos , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Águas Residuárias , Pandemias , Prevalência , RNA Viral
2.
FEBS Lett ; 594(12): 1989-2004, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32510601

RESUMO

Tick-borne encephalitis virus (TBEV), a member of flaviviruses, represents a serious health threat by causing human encephalitis mainly in central and eastern Europe, Russia, and northeastern Asia. As no specific therapy is available, there is an urgent need to understand all steps of the TBEV replication cycle at the molecular level. One of the critical events is the packaging of flaviviral genomic RNA by TBEV C protein to form a nucleocapsid. We purified recombinant TBEV C protein and used a combination of physical-chemical approaches, such as size-exclusion chromatography, circular dichroism, NMR spectroscopies, and transmission electron microscopy, to analyze its structural stability and its ability to dimerize/oligomerize. We compared the ability of TBEV C protein to assemble in vitro into a nucleocapsid-like structure with that of dengue C protein.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos/química , Proteínas Virais/química , Proteínas Virais/isolamento & purificação , Cromatografia em Gel , Dicroísmo Circular , Vírus da Dengue/química , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Nucleocapsídeo/química , Nucleocapsídeo/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Virais/genética , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA