Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Osteoarthritis Cartilage ; 29(2): 248-256, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33246158

RESUMO

OBJECTIVE: This study aimed to examine the temporal activation of NF-κB and its relationship to the development of pain-related sensitivity and behavioral changes in a non-invasive murine knee loading model of PTOA. METHOD: Following knee injury NF-κB activity was assessed longitudinally via in vivo imaging in FVB. Cg-Tg (HIV-EGFP,luc)8Tsb/J mice. Measures of pain-related sensitivity and behavior were also assessed longitudinally for 16 weeks. Additionally, we antagonized NF-κB signaling via intra-articular delivery of an IκB kinase two antagonist to understand how local NF-κB inhibition might alter disease progression. RESULTS: Following joint injury NF-κB signaling within the knee joint was transiently increased and peaked on day 3 with an estimated 1.35 p/s/cm2/sr (95% CI 0.913.1.792 p/s/cm2/sr) fold increase in signaling when compared to control joints. Furthermore, injury resulted in the long-term development of hindpaw allodynia. Hyperalgesia withdrawal thresholds were reduced at injured knee joints, with the largest reduction occurring 2 days following injury (estimate of between group difference 129.1 g with 95% CI 60.9,197.4 g), static weight bearing on injured limbs was also reduced. Local delivery of an NF-κB inhibitor following joint injury reduced chondrocyte death and influenced the development of pain-related sensitivity but did not reduce long-term cartilage degeneration. CONCLUSION: These findings underscore the development of behavioral changes in this non-invasive loading model of PTOA and their relationships to NF-κB activation and pathology. They also highlight the potential chondroprotective effects of NF-κB inhibition shortly following joint injury despite limitations in preventing the long-term development of joint degeneration in this model of PTOA.


Assuntos
Cartilagem Articular/metabolismo , NF-kappa B/metabolismo , Osteoartrite/metabolismo , Joelho de Quadrúpedes/metabolismo , Suporte de Carga , Animais , Comportamento Animal , Fenômenos Biomecânicos , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/patologia , Modelos Animais de Doenças , Hiperalgesia , Quinase I-kappa B/antagonistas & inibidores , Indazóis/farmacologia , Ácidos Isonicotínicos/farmacologia , Traumatismos do Joelho/complicações , Medições Luminescentes , Camundongos , Camundongos Transgênicos , NF-kappa B/efeitos dos fármacos , Osteoartrite/etiologia , Osteoartrite do Joelho/etiologia , Osteoartrite do Joelho/metabolismo , Joelho de Quadrúpedes/efeitos dos fármacos , Joelho de Quadrúpedes/lesões
2.
ACS Biomater Sci Eng ; 6(12): 6618-6625, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33320630

RESUMO

A successful in vitro tissue model must recapitulate the native tissue features while also being reproducible. Currently, Matrigel is the principal biomaterial used to induce the formation of proximal convoluted tubules (PCTs) in vitro, because of its similar composition and structure with the kidney tubular basement membrane and the presence of critical growth factors. However, Matrigel is not well-defined, and batch-to-batch variability is a significant issue. Here, we define a Matrigel-free method, using a laminin-entactin (L-E) matrix to support the formation of proximal tubular-like structures in vitro using immortalized human renal epithelial cells (RPTEC/TERT1) cocultured with murine fibroblast stromal cells (FOXD1lacZ+). The matrix supports the presence of specific components of the tubular basement membrane (laminin, entactin/nidogen, and heparan sulfate proteoglycan) in addition to fibroblast growth factor 8a (FGF-8a). The matrix also induces tubulogenesis, leading to the formation of PCTs based on several key markers, including E-cadherin, aquaporin-1, and Na+/K+ ATPase. Moreover, these PCT structures displayed cell polarity and a well-defined lumen after 18 days in culture. This laminin-entactin (L-E) matrix constitutes a defined and consistent biomaterial that can be used in kidney tissue engineering for understanding in vitro proximal tubule development and for nephrotoxicity studies.


Assuntos
Túbulos Renais Proximais/crescimento & desenvolvimento , Laminina , Proteoglicanas , Alicerces Teciduais , Animais , Colágeno , Combinação de Medicamentos , Fatores de Transcrição Forkhead , Humanos , Glicoproteínas de Membrana , Camundongos
3.
Cell Immunol ; 329: 10-16, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29661473

RESUMO

Silk fibroin is a novel biomaterial for enhancing transplanted islet cell function and survival. This study investigated whether silk fibroin may have unique properties that improve islet function in the face of inflammatory-mediated stress during transplantation. Murine islet function was tested in vitro with either silk fibroin or alginate and challenged with inflammatory cytokines. The glucose-stimulated insulin secretion index for all conditions decreased with inflammatory cytokines, but was better preserved for islets exposed to silk compared to those exposed to alginate or medium. GLUT2 transporter expression on the cell surface of islets exposed to silk was increased compared to alginate or medium alone. Upon cytokine stress, a greater percentage of islet cells exposed to silk expressed GLUT2 on their surface. We conclude that preconditioning islets with silk fibroin stimulates islet cell surface GLUT2 expression, an increase, which persists under inflammatory stress, and may improve islet engraftment and function after transplantation.


Assuntos
Fibroínas/metabolismo , Fibroínas/farmacologia , Ilhotas Pancreáticas/efeitos dos fármacos , Alginatos/farmacologia , Animais , Fibroínas/fisiologia , Transportador de Glucose Tipo 2/genética , Transportador de Glucose Tipo 2/metabolismo , Inflamação , Células Secretoras de Insulina/efeitos dos fármacos , Ilhotas Pancreáticas/fisiologia , Transplante das Ilhotas Pancreáticas/métodos , Transplante das Ilhotas Pancreáticas/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Seda/fisiologia , Estresse Fisiológico/efeitos dos fármacos
4.
J Tissue Eng Regen Med ; 12(5): 1247-1260, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29509306

RESUMO

In vitro culture of primary neurons is widely adapted with embryonic but not mature brain tissue. Here, we extended a previously developed bioengineered three-dimensional (3D) embryonic brain tissue model to resected normal patient brain tissue in an attempt to regenerate human neurons in vitro. Single cells and small sized (diameter < 100 µm) spheroids from dissociated brain tissue were seeded into 3D silk fibroin-based scaffolds, with or without collagen or Matrigel, and compared with two-dimensional cultures and scaffold-free suspension cultures. Changes of cell phenotypes (neuronal, astroglial, neural progenitor, and neuroepithelial) were quantified with flow cytometry and analyzed with a new method of statistical analysis specifically designed for percentage comparison. Compared with a complete lack of viable cells in conventional neuronal cell culture condition, supplements of vascular endothelial growth factor-containing pro-endothelial cell condition led to regenerative growth of neurons and astroglial cells from "normal" human brain tissue of epilepsy surgical patients. This process involved delayed expansion of Nestin+ neural progenitor cells, emergence of TUJ1+ immature neurons, and Vimentin+ neuroepithelium-like cell sheet formation in prolonged cultures (14 weeks). Micro-tissue spheroids, but not single cells, supported the brain tissue growth, suggesting importance of preserving native cell-cell interactions. The presence of 3D scaffold, but not hydrogel, allowed for Vimentin+ cell expansion, indicating a different growth mechanism than pluripotent cell-based brain organoid formation. The slow and delayed process implied an origin of quiescent neural precursors in the neocortex tissue. Further optimization of the 3D tissue model with primary human brain cells could provide personalized brain disease models.


Assuntos
Encéfalo/crescimento & desenvolvimento , Regeneração/fisiologia , Engenharia Tecidual/métodos , Adolescente , Encéfalo/efeitos dos fármacos , Células Cultivadas , DNA/metabolismo , Matriz Extracelular/química , Feminino , Humanos , Masculino , Neurônios/citologia , Neurônios/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Seda/farmacologia , Esferoides Celulares/citologia , Esferoides Celulares/efeitos dos fármacos , Alicerces Teciduais/química , Sobrevivência de Tecidos/efeitos dos fármacos
5.
Sci Rep ; 8(1): 1676, 2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-29374211

RESUMO

Type III solar radio bursts are the Sun's most intense and frequent nonthermal radio emissions. They involve two critical problems in astrophysics, plasma physics, and space physics: how collective processes produce nonthermal radiation and how magnetic reconnection occurs and changes magnetic energy into kinetic energy. Here magnetic reconnection events are identified definitively in Solar Dynamics Observatory UV-EUV data, with strong upward and downward pairs of jets, current sheets, and cusp-like geometries on top of time-varying magnetic loops, and strong outflows along pairs of open magnetic field lines. Type III bursts imaged by the Murchison Widefield Array and detected by the Learmonth radiospectrograph and STEREO B spacecraft are demonstrated to be in very good temporal and spatial coincidence with specific reconnection events and with bursts of X-rays detected by the RHESSI spacecraft. The reconnection sites are low, near heights of 5-10 Mm. These images and event timings provide the long-desired direct evidence that semi-relativistic electrons energized in magnetic reconnection regions produce type III radio bursts. Not all the observed reconnection events produce X-ray events or coronal or interplanetary type III bursts; thus different special conditions exist for electrons leaving reconnection regions to produce observable radio, EUV, UV, and X-ray bursts.

6.
Nature ; 554(7691): 207-210, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29261643

RESUMO

GW170817 was the first gravitational-wave detection of a binary neutron-star merger. It was accompanied by radiation across the electromagnetic spectrum and localized to the galaxy NGC 4993 at a distance of 40 megaparsecs. It has been proposed that the observed γ-ray, X-ray and radio emission is due to an ultra-relativistic jet being launched during the merger (and successfully breaking out of the surrounding material), directed away from our line of sight (off-axis). The presence of such a jet is predicted from models that posit neutron-star mergers as the drivers of short hard-γ-ray bursts. Here we report that the radio light curve of GW170817 has no direct signature of the afterglow of an off-axis jet. Although we cannot completely rule out the existence of a jet directed away from the line of sight, the observed γ-ray emission could not have originated from such a jet. Instead, the radio data require the existence of a mildly relativistic wide-angle outflow moving towards us. This outflow could be the high-velocity tail of the neutron-rich material that was ejected dynamically during the merger, or a cocoon of material that breaks out when a jet launched during the merger transfers its energy to the dynamical ejecta. Because the cocoon model explains the radio light curve of GW170817, as well as the γ-ray and X-ray emission (and possibly also the ultraviolet and optical emission), it is the model that is most consistent with the observational data. Cocoons may be a ubiquitous phenomenon produced in neutron-star mergers, giving rise to a hitherto unidentified population of radio, ultraviolet, X-ray and γ-ray transients in the local Universe.

7.
J Mater Chem B ; 5(24): 4789-4796, 2017 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-29098078

RESUMO

Extracellular matrix (ECM) is a system used to model the design of biomaterial matrices for tissue regeneration. Various biomaterial systems have been developed to mimic the composition or microstructure of the ECM. However, emulating multiple facets of the ECM in these systems remains a challenge. Here, a new strategy is reported which addresses this need by using silk fibroin and chitosan (CS) nanocomposite materials. Silk fibroin was first assembled into ECM-mimetic nanofibers in water and then blended with CS to introduce the nanostructural cues. Then the ratios of silk fibroin and CS were optimized to imitate the protein and glycosaminoglycan compositions. These biomaterial scaffolds had suitable compositions, hierarchical nano-to-micro structures, and appropriate mechanical properties to promote cell proliferation in vitro, and vascularization and tissue regeneration in vivo. Compared to previous silk-based scaffolds, these scaffolds achieved improvements in biocompatibility, suggesting promising applications in the future in tissue regeneration.

8.
Science ; 358(6370): 1579-1583, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29038372

RESUMO

Gravitational waves have been detected from a binary neutron star merger event, GW170817. The detection of electromagnetic radiation from the same source has shown that the merger occurred in the outskirts of the galaxy NGC 4993, at a distance of 40 megaparsecs from Earth. We report the detection of a counterpart radio source that appears 16 days after the event, allowing us to diagnose the energetics and environment of the merger. The observed radio emission can be explained by either a collimated ultrarelativistic jet, viewed off-axis, or a cocoon of mildly relativistic ejecta. Within 100 days of the merger, the radio light curves will enable observers to distinguish between these models, and the angular velocity and geometry of the debris will be directly measurable by very long baseline interferometry.

9.
Science ; 358(6370): 1559-1565, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29038373

RESUMO

Merging neutron stars offer an excellent laboratory for simultaneously studying strong-field gravity and matter in extreme environments. We establish the physical association of an electromagnetic counterpart (EM170817) with gravitational waves (GW170817) detected from merging neutron stars. By synthesizing a panchromatic data set, we demonstrate that merging neutron stars are a long-sought production site forging heavy elements by r-process nucleosynthesis. The weak gamma rays seen in EM170817 are dissimilar to classical short gamma-ray bursts with ultrarelativistic jets. Instead, we suggest that breakout of a wide-angle, mildly relativistic cocoon engulfing the jet explains the low-luminosity gamma rays, the high-luminosity ultraviolet-optical-infrared, and the delayed radio and x-ray emission. We posit that all neutron star mergers may lead to a wide-angle cocoon breakout, sometimes accompanied by a successful jet and sometimes by a choked jet.

10.
Transfus Clin Biol ; 24(3): 273-276, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28669522

RESUMO

Millions of platelets, specialized cells that participate in haemostatic and inflammatory functions, are transfused each year worldwide, but their supply is limited. Platelets are produced by megakaryocytes by extending proplatelets, directly into the bloodstream. Bone marrow structure and extracellular matrix composition together with soluble factors (e.g. Thrombopoietin) are key regulators of megakaryopoiesis by supporting cell differentiation and platelet release. Despite this knowledge, the scarcity of clinical cures for life threatening platelet diseases is in a large part due to limited insight into the mechanisms that control the developmental process of megakaryocytes and the mechanisms that govern the production of platelets within the bone marrow. To overcome these limitations, functional human tissue models have been developed and studied to extrapolate ex vivo outcomes for new insight on bone marrow functions in vivo. There are many challenges that these models must overcome, from faithfully mimicking the physiological composition and functions of bone marrow, to the collection of the platelets generated and validation of their viability and function for human use. The overall goal is to identify innovative instruments to study mechanisms of platelet release, diseases related to platelet production and new therapeutic targets starting from human progenitor cells.


Assuntos
Plaquetas/citologia , Animais , Benzoatos/uso terapêutico , Reatores Biológicos , Medula Óssea , Técnicas de Cultura de Células , Células Cultivadas , Microambiente Celular , Necessidades e Demandas de Serviços de Saúde , Humanos , Hidrazinas/uso terapêutico , Megacariócitos/citologia , Modelos Animais , Transfusão de Plaquetas , Pirazóis/uso terapêutico , Trombocitopenia/terapia , Trombopoese
11.
J Tissue Eng Regen Med ; 11(6): 1732-1740, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-26174196

RESUMO

Tissue-engineered bone (TEB) analysis in vivo relies heavily on tissue histological and end-point evaluations requiring the sacrifice of animals at specific time points. Due to differences in animal response to implanted tissues, the conventional analytical methods to evaluate TEB can introduce data inconsistencies. Additionally, the conventional methods increase the number of animals required to provide an acceptable statistical power for hypothesis testing. Alternatively, our non-invasive optical imaging allows for the longitudinal analysis of regenerating tissue, where each animal acts as its own control, thus reducing overall animal numbers. In our 6 month feasibility study, TEB, consisting of a silk protein scaffold with or without differentiated mesenchymal stem cells, was implanted in a critical-sized calvarial defect mouse model. Osteogenesis of the TEB was monitored through signal variation, using magnetic resonance imaging (MRI) and near-infrared (NIR) optical imaging with IRDye® 800CW BoneTagTM (800CW BT, a bone-specific marker used to label osteogenically differentiated mesenchymal stem cells and mineralization). Histological endpoint measurements and computed tomography (CT) were used to confirm imaging findings. Anatomical MRI revealed decreased signal intensity, indicating mineralization, in the TEB compared to the control (i.e. silk scaffold only) at various growth stages. NIR optical imaging results demonstrated a signal intensity increase of the TEB compared to control. Interpretation of the imaging results were confirmed by histological analysis. Specifically, haematoxylin and eosin staining revealing de novo bone in TEB showed that 80% of the defect was covered by TEB, while only 40% was covered for the control. Taken together, these results demonstrate the potential of multi-modal non-invasive imaging to visualize and quantify TEB for the assessment of regenerative medicine strategies. Copyright © 2015 John Wiley & Sons, Ltd.


Assuntos
Substitutos Ósseos , Imageamento por Ressonância Magnética , Células-Tronco Mesenquimais/metabolismo , Imagem Óptica , Osteogênese , Crânio , Engenharia Tecidual , Tomografia Computadorizada por Raios X , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Crânio/diagnóstico por imagem , Crânio/lesões , Adulto Jovem
12.
Acta Biomater ; 45: 234-246, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27591919

RESUMO

There is an unmet clinical need for novel wound healing strategies to treat full thickness skin defects, especially in diabetic patients. We hypothesized that a scaffold could perform dual roles of a biomechanical support and a favorable biochemical environment for stem cells. Human umbilical cord perivascular cells (HUCPVCs) have been recently reported as a type of mesenchymal stem cell that can accelerate early wound healing in skin defects. However, there are only a limited number of studies that have incorporated these cells into natural scaffolds for dermal tissue engineering. The aim of the present study was to promote angiogenesis and accelerate wound healing by using HUCPVCs and decellularized dermal matrix (DDM) in a rat model of diabetic wounds. The DDM scaffolds were prepared from harvested human skin samples and histological, ultrastructural, molecular and mechanical assessments were carried out. In comparison with the control (without any treatment) and DDM alone group, full thickness excisional wounds treated with HUCPVCs-loaded DDM scaffolds demonstrated an accelerated wound closure rate, faster re-epithelization, more granulation tissue formation and decreased collagen deposition. Furthermore, immunofluorescence analysis showed that the VEGFR-2 expression and vascular density in the HUCPVCs-loaded DDM scaffold treated group were also significantly higher than the other groups at 7days post implantation. Since the rates of angiogenesis, re-epithelization and formation of granulation tissue are directly correlated with full thickness wound healing in patients, the proposed HUCPVCs-loaded DDM scaffolds may fulfil a role neglected by current treatment strategies. This pre-clinical proof-of-concept study warrants further clinical evaluation. STATEMENT OF SIGNIFICANCE: The aim of the present study was to design a novel tissue-engineered system to promote angiogenesis, re-epithelization and granulation of skin tissue using human umbilical cord perivascular stem cells and decellularized dermal matrix natural scaffolds in rat diabetic wound models. The authors of this research article have been working on stem cells and tissue engineering scaffolds for years. According to our knowledge, there is a lack of an efficient system for the treatment of skin defects using tissue engineering strategy. Since the rates of angiogenesis, re-epithelization and granulation tissue are directly correlated with full thickness wound healing, the proposed HUCPVCs-loaded DDM scaffolds perfectly fills the niche neglected by current treatment strategies. This pre-clinical study demonstrates the proof-of-concept that necessitates clinical evaluations.


Assuntos
Derme Acelular/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/terapia , Cordão Umbilical/citologia , Cicatrização , Adulto , Animais , Fenômenos Biomecânicos , Morte Celular , Sobrevivência Celular , DNA/metabolismo , Modelos Animais de Doenças , Citometria de Fluxo , Imunofluorescência , Tecido de Granulação/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Neovascularização Fisiológica , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Resistência à Tração , Alicerces Teciduais/química , Adulto Jovem
13.
J Mater Chem B ; 4(20): 3555-3561, 2016 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-27482381

RESUMO

Improving the controlled release of bioactive growth factors to regulate cell behavior and tissue regeneration remains a need in tissue engineering and regenerative medicine. Inorganic and polymeric nanoparticles have been extensively fabricated as bioactive biomaterials with enhanced biocompatibility and effective carriers of therapeutic agents, however, challenges remain such as the achievement of high loading capacity and sustained release, and the bioactivity preservation of growth factors. Here, a multilayered, silk coated hydroxyapatite (HA) nanocarrier with drug loading-release capacity superior to pure silk or HA nanoparticles was developed. Bone morphogenetic protein-2 (BMP-2) was bound to the silk coatings with a high binding efficiency of 99.6%, significantly higher than that in silk or the HA nanoparticles alone. The release of BMP-2 was sustained in vitro over a period of 21 days without burst release. Compared with BMP-2 loaded silk or HA particles, bone mesenchymal stem cells (BMSCs) showed improved proliferation and osteogenesis when cultured with the BMP-2 loaded composite nanocarriers. Therefore, these silk-HA composite nanoparticles present a useful approach to designing bioactive nanocarrier systems with enhanced functions for bone tissue regeneration needs.

14.
Sci Rep ; 6: 25263, 2016 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-27151492

RESUMO

The regeneration of structural biopolymers into micelles or nanoparticles suspended in water has enabled the design of new materials with unique and compelling properties that can serve at the interface between the biotic and the abiotic worlds. In this study, we leveraged silk fibroin quintessential properties (i.e. polymorphism, conformability and hydrophobicity) to design a water-based protein suspension that self-assembles on the surface of food upon dip coating. The water-based post-processing control of the protein polymorphism enables the modulation of the diffusion of gases through the silk fibroin thin membranes (e.g. O2 and CO2 diffusion, water vapour permeability), which is a key parameter to manage food freshness. In particular, an increased beta-sheet content corresponds to a reduction in oxygen diffusion through silk fibroin thin films. By using the dip coating of strawberries and bananas as proof of principle, we have shown that the formation of micrometre-thin silk fibroin membranes around the fruits helps the management of postharvest physiology of the fruits. Thus, silk fibroin coatings enhance fruits' shelf life at room conditions by reducing cell respiration rate and water evaporation. The water-based processing and edible nature of silk fibroin makes this approach a promising alternative for food preservation with a naturally derived material.


Assuntos
Fibroínas/farmacologia , Conservação de Alimentos/métodos , Conservantes de Alimentos/farmacologia , Fragaria , Musa
15.
Nature ; 530(7591): 453-6, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26911781

RESUMO

In recent years, millisecond-duration radio signals originating in distant galaxies appear to have been discovered in the so-called fast radio bursts. These signals are dispersed according to a precise physical law and this dispersion is a key observable quantity, which, in tandem with a redshift measurement, can be used for fundamental physical investigations. Every fast radio burst has a dispersion measurement, but none before now have had a redshift measurement, because of the difficulty in pinpointing their celestial coordinates. Here we report the discovery of a fast radio burst and the identification of a fading radio transient lasting ~6 days after the event, which we use to identify the host galaxy; we measure the galaxy's redshift to be z = 0.492 ± 0.008. The dispersion measure and redshift, in combination, provide a direct measurement of the cosmic density of ionized baryons in the intergalactic medium of ΩIGM = 4.9 ± 1.3 per cent, in agreement with the expectation from the Wilkinson Microwave Anisotropy Probe, and including all of the so-called 'missing baryons'. The ~6-day radio transient is largely consistent with the radio afterglow of a short γ-ray burst, and its existence and timescale do not support progenitor models such as giant pulses from pulsars, and supernovae. This contrasts with the interpretation of another recently discovered fast radio burst, suggesting that there are at least two classes of bursts.

16.
J Mater Chem B ; 3(42): 8314-8320, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-26693020

RESUMO

Improving the therapeutic efficacy of chemotherapy remains a key goal for cancer therapy. Various passive and active targeting strategies have been developed to facilitate drug release targeted to cancer lesions, but actively designing tunable drug release behavior for these needs remains a challenge. As a step towards this need, silk-vaterite microspheres were fabricated and utilized as carriers to tune drug release. Doxorubicin (DOX) was loaded on the microspheres with high efficiency and the release behavior was regulated by tuning the microspheres via thermal processing. In vitro cell inhibition results showed that the drug-loaded microspheres had different cytotoxic efficiencies depending on the DOX release rates. Better efficacy at lower drug doses suggests options to optimize anticancer effects while minimizing toxic side effects. The tunable drug release capacity combined with the inherent passive targeting property of vaterite-based carriers based on pH sensitivity suggests a promising system for enhanced efficacy of chemotherapy.

17.
Insect Biochem Mol Biol ; 65: 100-6, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26365738

RESUMO

Silk is a protein of interest to both biological and industrial sciences. The silkworm, Bombyx mori, forms this protein into strong threads starting from soluble silk proteins using a number of biochemical and physical cues to allow the transition from liquid to fibrous silk. A pH gradient has been measured along the gland, but the methodology employed was not able to precisely determine the pH at specific regions of interest in the silk gland. Furthermore, the physiological mechanisms responsible for the generation of this pH gradient are unknown. In this study, concentric ion selective microelectrodes were used to determine the luminal pH of B. mori silk glands. A gradient from pH 8.2 to 7.2 was measured in the posterior silk gland, with a pH 7 throughout the middle silk gland, and a gradient from pH 6.8 to 6.2 in the beginning of the anterior silk gland where silk processing into fibers occurs. The small diameter of the most anterior region of the anterior silk gland prevented microelectrode access in this region. Using a histochemical method, the presence of active carbonic anhydrase was identified in the funnel and anterior silk gland of fifth instar larvae. The observed pH gradient collapsed upon addition of the carbonic anhydrase inhibitor methazolamide, confirming an essential role for this enzyme in pH regulation in the B. mori silk gland. Plastic embedding of whole silk glands allowed clear visualization of the morphology, including the identification of four distinct epithelial cell types in the gland and allowed correlations between silk gland morphology and silk stages of assembly related to the pH gradient. B. mori silk glands have four different epithelial cell types, one of which produces carbonic anhydrase. Carbonic anhydrase is necessary for the mechanism that generates an intraluminal pH gradient, which likely regulates the assembly of silk proteins and then the formation of fibers from soluble silk proteins. These new insights into native silk formation may lead to a more efficient production of artificial or regenerated silkworm silk fibers.


Assuntos
Bombyx/enzimologia , Anidrases Carbônicas/metabolismo , Glândulas Exócrinas/enzimologia , Animais , Inibidores da Anidrase Carbônica/farmacologia , Glândulas Exócrinas/citologia , Concentração de Íons de Hidrogênio , Larva/enzimologia , Metazolamida/farmacologia , Força Próton-Motriz , Seda/biossíntese
18.
J Mater Chem B ; 3(31): 6509-6519, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26257913

RESUMO

Tracking the distribution and degradation of biomaterials after in vivo implantation or injection is important for tissue engineering and drug delivery. Intrinsic and externally labeled fluorescence has been widely used for these purposes. In the present study, 3-mercaptopropionic acid (MPA)-coated CdTe quantum dots (QDs) were incorporated into silk materials via strong interactions between QDs and silk, likely involving the hydrophobic beta-sheet structures in silk. MPA-QDs were pre-mixed with silk solution, followed by ultrasonication to induce silk gelation or by blending with polyvinyl alcohol (PVA) to generate silk microspheres. Silk structural changes and hydrogel/microsphere morphologies were examined by ATR-FTIR and SEM, respectively. The fluorescence of QDs-incorporated silk hydrogels and microspheres remained stable in PBS pH 7.4 for more than 4 days. The amount of QDs released from the materials during the incubation was dependent on loading; no QDs were released when loading was below 0.026 nmol/mg silk. After subcutaneous injection in mice, the fluorescence of QDs-incorporated silk microspheres was quenched within 24 h, similar to that of free QDs. In contrast, the QDs-incorporated silk hydrogels fluoresced for more than 4 days in vivo.

19.
J Biomed Mater Res B Appl Biomater ; 103(6): 1217-1227, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25350377

RESUMO

Soft-tissue regeneration methods currently yield suboptimal clinical outcomes due to loss of tissue volume and a lack of functional tissue regeneration. Grafted tissues and natural biomaterials often degrade or resorb too quickly, while most synthetic materials do not degrade. In previous research we demonstrated that soft-tissue regeneration can be supported using silk porous biomaterials for at least 18 months in vivo in a rodent model. In the present study, we scaled the system to a survival study using a large animal model and demonstrated the feasibility of these biomaterials for soft-tissue regeneration in adult horses. Both slow and rapidly degrading silk matrices were evaluated in subcutaneous pocket and intramuscular defect depots. We showed that we can effectively employ an equine model over 6 months to simultaneously evaluate many different implants, reducing the number of animals needed. Furthermore, we were able to tailor matrix degradation by varying the initial format of the implanted silk. Finally, we demonstrate ultrasound imaging of implants to be an effective means for tracking tissue regeneration and implant degradation.


Assuntos
Implantes Absorvíveis , Modelos Animais de Doenças , Músculo Esquelético/lesões , Músculo Esquelético/fisiologia , Regeneração , Seda/química , Animais , Cavalos , Músculo Esquelético/diagnóstico por imagem , Ultrassonografia
20.
J Mech Behav Biomed Mater ; 41: 43-55, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25460402

RESUMO

Despite technological advances over the past 25 years, a complete recovery from peripheral nerve injuries remains unsatisfactory today. The autograft is still considered the "gold standard" in clinical practice; however, postoperative complications and limited availability of nerve tissue have motivated the development of alternative approaches. Among them, the development of biomimetic nerve graft substitutes is one of the most promising strategies. In this study, multichanneled silk electrospun conduits bi-functionalized with Nerve Growth Factor (NGF) and Ciliary Neurotropic Factor (CNTF) were fabricated to enhance peripheral nerve regeneration. These bioactive guides consisting of longitudinally oriented channels and aligned nanofibers were designed in order to mimic the fascicular architecture and fibrous extracellular matrix found in native nerve. The simple use of the electrospinning technique followed by a manual manipulation to manufacture these conduits provides tailoring of channel number and diameter size to create perineurium-like structures. Functionalization of the silk fibroin nanofiber did not affect its secondary structure and chemical property. ELISA assays showed the absence of growth factors passive release from the functionalized fibers avoiding the topical accumulation of proteins. In addition, our biomimetic multichanneled functionalized nerve guides displayed a mechanical behavior comparable to that of rat sciatic nerve with an ultimate peak stress of 4.0 ± 0.6 MPa and a corresponding elongation at failure of 156.8 ± 46.7%. Taken together, our results demonstrate for the first time our ability to design and characterize a bi-functionalized nerve conduit consisting of electrospun nanofibers with multichannel oriented and nanofibers aligned for peripheral regeneration. Our bioactive silk tubes thus represent a new and promising technique towards the creation of a biocompatible nerve guidance conduit.


Assuntos
Eletricidade , Fibroínas/química , Fibroínas/farmacologia , Regeneração Tecidual Guiada , Regeneração Nervosa/efeitos dos fármacos , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/fisiologia , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Materiais Biocompatíveis/farmacologia , Fator Neurotrófico Ciliar/metabolismo , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Fibroínas/metabolismo , Masculino , Fenômenos Mecânicos , Nanofibras/química , Nanotecnologia , Fator de Crescimento Neural/metabolismo , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/citologia , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA