Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
iScience ; 27(5): 109573, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38660409

RESUMO

We examined from a large exploratory study cohort of COVID-19 patients (N = 549) a validated panel of neutrophil extracellular traps (NETs) markers in different categories of disease severity. Neutrophil elastase (NE), myeloperoxidase (MPO), and circulating nuclear DNA (cir-nDNA) levels in plasma were seen to gradually and significantly (p < 0.0001) increase with the disease severity: mild (3.7, 48.9, and 15.8 ng/mL, respectively); moderate (9.8, 77.5, and 27.7 ng/mL, respectively); severe (11.7, 99.5, and 29.0 ng/mL, respectively); and critical (13.1, 110.2, and 46.0 ng/mL, respectively); and are also statistically different with healthy individuals (N = 140; p < 0.0001). All observations made in relation to the Delta variant-infected patients are in line with Omicron-infected patients. We unexpectedly observed significantly higher levels of NETs in asymptomatic individuals as compared to healthy subjects (p < 0.0001). Moreover, the balance of cir-nDNA and circulating mitochondrial DNA level was affected in COVID-19 infected patients attesting to mitochondrial dysfunction.

3.
Mol Vis ; 22: 1036-47, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27582626

RESUMO

PURPOSE: Retinoblastoma (Rb) is the most common primary intraocular cancer of childhood and one of the major causes of blindness in children. India has the highest number of patients with Rb in the world. Mutations in the RB1 gene are the primary cause of Rb, and heterogeneous mutations are distributed throughout the entire length of the gene. Therefore, genetic testing requires screening of the entire gene, which by conventional sequencing is time consuming and expensive. METHODS: In this study, we screened the RB1 gene in the DNA isolated from blood or saliva samples of 50 unrelated patients with Rb using the TruSight Cancer panel. Next-generation sequencing (NGS) was done on the Illumina MiSeq platform. Genetic variations were identified using the Strand NGS software and interpreted using the StrandOmics platform. RESULTS: We were able to detect germline pathogenic mutations in 66% (33/50) of the cases, 12 of which were novel. We were able to detect all types of mutations, including missense, nonsense, splice site, indel, and structural variants. When we considered bilateral Rb cases only, the mutation detection rate increased to 100% (22/22). In unilateral Rb cases, the mutation detection rate was 30% (6/20). CONCLUSIONS: Our study suggests that NGS-based approaches increase the sensitivity of mutation detection in the RB1 gene, making it fast and cost-effective compared to the conventional tests performed in a reflex-testing mode.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Neoplasias da Retina/genética , Proteínas de Ligação a Retinoblastoma/genética , Retinoblastoma/genética , Ubiquitina-Proteína Ligases/genética , Adulto , Povo Asiático/genética , Criança , Pré-Escolar , Códon sem Sentido , Estudos de Coortes , Análise Mutacional de DNA , Éxons/genética , Feminino , Genes do Retinoblastoma , Testes Genéticos/métodos , Mutação em Linhagem Germinativa , Humanos , Índia , Lactente , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Adulto Jovem
4.
J Hum Genet ; 61(6): 515-22, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26911350

RESUMO

Breast and/or ovarian cancer (BOC) are among the most frequently diagnosed forms of hereditary cancers and leading cause of death in India. This emphasizes on the need for a cost-effective method for early detection of these cancers. We sequenced 141 unrelated patients and families with BOC using the TruSight Cancer panel, which includes 13 genes strongly associated with risk of inherited BOC. Multi-gene sequencing was done on the Illumina MiSeq platform. Genetic variations were identified using the Strand NGS software and interpreted using the StrandOmics platform. We were able to detect pathogenic mutations in 51 (36.2%) cases, out of which 19 were novel mutations. When we considered familial breast cancer cases only, the detection rate increased to 52%. When cases were stratified based on age of diagnosis into three categories, ⩽40 years, 40-50 years and >50 years, the detection rates were higher in the first two categories (44.4% and 53.4%, respectively) as compared with the third category, in which it was 26.9%. Our study suggests that next-generation sequencing-based multi-gene panels increase the sensitivity of mutation detection and help in identifying patients with a high risk of developing cancer as compared with sequential tests of individual genes.


Assuntos
Neoplasias da Mama/epidemiologia , Neoplasias da Mama/genética , Síndrome Hereditária de Câncer de Mama e Ovário/epidemiologia , Síndrome Hereditária de Câncer de Mama e Ovário/genética , Mutação , Neoplasias Ovarianas/epidemiologia , Neoplasias Ovarianas/genética , Adulto , Idade de Início , Idoso , Neoplasias da Mama/diagnóstico , Variações do Número de Cópias de DNA , Feminino , Deleção de Genes , Duplicação Gênica , Genes BRCA1 , Genes BRCA2 , Testes Genéticos/métodos , Síndrome Hereditária de Câncer de Mama e Ovário/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Índia/epidemiologia , Pessoa de Meia-Idade , Taxa de Mutação , Neoplasias Ovarianas/diagnóstico , Prevalência , Adulto Jovem
5.
J Bacteriol ; 193(14): 3569-76, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21602351

RESUMO

Occasionally, ribosomes stall on mRNAs prior to the completion of the polypeptide chain. In Escherichia coli and other eubacteria, tmRNA-mediated trans-translation is a major mechanism that recycles the stalled ribosomes. The tmRNA possesses a tRNA-like domain and a short mRNA region encoding a short peptide (ANDENYALAA in E. coli) followed by a termination codon. The first amino acid (Ala) of this peptide encoded by the resume codon (GCN) is highly conserved in tmRNAs in different species. However, reasons for the high evolutionary conservation of the resume codon identity have remained unclear. In this study, we show that changing the E. coli tmRNA resume codon to other efficiently translatable codons retains efficient functioning of the tmRNA. However, when the resume codon was replaced with the low-usage codons, its function was adversely affected. Interestingly, expression of tRNAs decoding the low-usage codon from plasmid-borne gene copies restored efficient utilization of tmRNA. We discuss why in E. coli, the GCA (Ala) is one of the best codons and why all codons in the short mRNA of the tmRNA are decoded by the abundant tRNAs.


Assuntos
Alanina/genética , Escherichia coli/genética , Evolução Molecular , RNA Bacteriano/genética , Alanina/metabolismo , Sequência de Bases , Códon , Sequência Conservada , Escherichia coli/química , Escherichia coli/metabolismo , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA Bacteriano/química , RNA Bacteriano/metabolismo
6.
Nucleic Acids Res ; 39(1): 202-12, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20798174

RESUMO

The accuracy of the initiator tRNA (tRNA(fMet)) selection in the ribosomal P-site is central to the fidelity of protein synthesis. A highly conserved occurrence of three consecutive G-C base pairs in the anticodon stem of tRNA(fMet) contributes to its preferential selection in the P-site. In a genetic screen, using a plasmid borne copy of an inactive tRNA(fMet) mutant wherein the three G-C base pairs were changed, we isolated Escherichia coli strains that allow efficient initiation with the tRNA(fMet) mutant. Here, extensive characterization of two such strains revealed novel mutations in the metZWV promoter severely compromising tRNA(fMet) levels. Low cellular abundance of the chromosomally encoded tRNA(fMet) allows efficient initiation with the tRNA(fMet) mutant and an elongator tRNA(Gln), revealing that a high abundance of the cellular tRNA(fMet) is crucial for the fidelity of initiator tRNA selection on the ribosomal P-site in E. coli. We discuss possible implications of the changes in the cellular tRNA(fMet) abundance in proteome remodeling.


Assuntos
Escherichia coli/genética , Iniciação Traducional da Cadeia Peptídica , RNA de Transferência de Metionina/genética , Ribossomos/metabolismo , Anticódon/química , Pareamento de Bases , Mapeamento Cromossômico , Temperatura Baixa , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Loci Gênicos , Mutação , RNA de Transferência de Glutamina/metabolismo , RNA de Transferência de Metionina/química , RNA de Transferência de Metionina/metabolismo , Ribossomos/química , Supressão Genética
7.
EMBO J ; 27(6): 840-51, 2008 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-18288206

RESUMO

Translation initiation from the ribosomal P-site is the specialty of the initiator tRNAs (tRNA(fMet)). Presence of the three consecutive G-C base pairs (G29-C41, G30-C40 and G31-C39) in their anticodon stems, a highly conserved feature of the initiator tRNAs across the three kingdoms of life, has been implicated in their preferential binding to the P-site. How this feature is exploited by ribosomes has remained unclear. Using a genetic screen, we have isolated an Escherichia coli strain, carrying a G122D mutation in folD, which allows initiation with the tRNA(fMet) containing mutations in one, two or all the three G-C base pairs. The strain shows a severe deficiency of methionine and S-adenosylmethionine, and lacks nucleoside methylations in rRNA. Targeted mutations in the methyltransferase genes have revealed a connection between the rRNA modifications and the fundamental process of the initiator tRNA selection by the ribosome.


Assuntos
Proteínas de Escherichia coli/genética , Iniciação Traducional da Cadeia Peptídica/genética , RNA Ribossômico 16S/metabolismo , Ribossomos/metabolismo , 5,10-Metilenotetra-Hidrofolato Redutase (FADH2)/biossíntese , 5,10-Metilenotetra-Hidrofolato Redutase (FADH2)/genética , Substituição de Aminoácidos/genética , Sequência de Bases , Proteínas de Escherichia coli/biossíntese , Metilação , Dados de Sequência Molecular , Mutação , RNA Bacteriano/metabolismo , RNA Ribossômico 16S/fisiologia , RNA de Transferência de Metionina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA