Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Front Aging Neurosci ; 16: 1373252, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38665899

RESUMO

Manual motor performance declines with age, but the extent to which age influences the acquisition of new skills remains a topic of debate. Here, we examined whether older healthy adults show less training-dependent performance improvements during a single session of a bimanual pinch task than younger adults. We also explored whether physical and cognitive factors, such as grip strength or motor-cognitive ability, are associated with performance improvements. Healthy younger (n = 16) and older (n = 20) adults performed three training blocks separated by short breaks. Participants were tasked with producing visually instructed changes in pinch force using their right and left thumb and index fingers. Task complexity was varied by shifting between bimanual mirror-symmetric and inverse-asymmetric changes in pinch force. Older adults generally displayed higher visuomotor force tracking errors during the more complex inverse-asymmetric task compared to younger adults. Both groups showed a comparable net decrease in visuomotor force tracking error over the entire session, but their improvement trajectories differed. Young adults showed enhanced visuomotor tracking error only in the first block, while older adults exhibited a more gradual improvement over the three training blocks. Furthermore, grip strength and performance on a motor-cognitive test battery scaled positively with individual performance improvements during the first block in both age groups. Together, the results show subtle age-dependent differences in the rate of bimanual visuomotor skill acquisition, while overall short-term learning ability is maintained.

2.
Neuroimage ; 276: 120203, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37271303

RESUMO

Many activities of daily living require quick shifts between symmetric and asymmetric bimanual actions. Bimanual motor control has been mostly studied during continuous repetitive tasks, while little research has been carried out in experimental settings requiring dynamic changes in motor output generated by both hands. Here, we performed functional magnetic resonance imaging (MRI) while healthy volunteers performed a visually guided, bimanual pinch force task. This enabled us to map functional activity and connectivity of premotor and motor areas during bimanual pinch force control in different task contexts, requiring mirror-symmetric or inverse-asymmetric changes in discrete pinch force exerted with the right and left hand. The bilateral dorsal premotor cortex showed increased activity and effective coupling to the ipsilateral supplementary motor area (SMA) in the inverse-asymmetric context compared to the mirror-symmetric context of bimanual pinch force control while the SMA showed increased negative coupling to visual areas. Task-related activity of a cluster in the left caudal SMA also scaled positively with the degree of synchronous initiation of bilateral pinch force adjustments, irrespectively of the task context. The results suggest that the dorsal premotor cortex mediates increasing complexity of bimanual coordination by increasing coupling to the SMA while SMA provides feedback about motor actions to the sensory system.


Assuntos
Córtex Motor , Desempenho Psicomotor , Humanos , Córtex Motor/diagnóstico por imagem , Atividades Cotidianas , Mãos , Imageamento por Ressonância Magnética , Lateralidade Funcional
3.
Trials ; 24(1): 216, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36949490

RESUMO

BACKGROUND: Many patients do not fully regain motor function after ischemic stroke. Transcranial direct current stimulation (TDCS) targeting the motor cortex may improve motor outcome as an add-on intervention to physical rehabilitation. However, beneficial effects on motor function vary largely among patients within and across TDCS trials. In addition to a large heterogeneity of study designs, this variability may be caused by the fact that TDCS was given as a one-size-fits-all protocol without accounting for anatomical differences between subjects. The efficacy and consistency of TDCS might be improved by a patient-tailored design that ensures precise targeting of a physiologically relevant area with an appropriate current strength. METHODS: In a randomized, double-blinded, sham-controlled trial, patients with subacute ischemic stroke and residual upper-extremity paresis will receive two times 20 min of focal TDCS of ipsilesional primary motor hand area (M1-HAND) during supervised rehabilitation training three times weekly for 4 weeks. Anticipated 60 patients will be randomly assigned to active or sham TDCS of ipsilesional M1-HAND, using a central anode and four equidistant cathodes. The placement of the electrode grid on the scalp and current strength at each cathode will be personalized based on individual electrical field models to induce an electrical current of 0.2 V/m in the cortical target region resulting in current strengths between 1 and 4 mA. Primary endpoint will be the difference in change of Fugl-Meyer Assessment of Upper Extremity (FMA-UE) score between active TDCS and sham at the end of the intervention. Exploratory endpoints will include UE-FMA at 12 weeks. Effects of TDCS on motor network connectivity and interhemispheric inhibition will be assessed with functional MRI and transcranial magnetic stimulation. DISCUSSION: The study will show the feasibility and test the efficacy of personalized, multi-electrode anodal TDCS of M1-HAND in patients with subacute stroke patients with upper-extremity paresis. Concurrent multimodal brain mapping will shed light into the mechanisms of action of therapeutic personalized TDCS of M1-HAND. Together, the results from this trial may inform future personalized TDCS studies in patients with focal neurological deficits after stroke.


Assuntos
AVC Isquêmico , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Estimulação Transcraniana por Corrente Contínua , Humanos , Reabilitação do Acidente Vascular Cerebral/métodos , Estimulação Transcraniana por Corrente Contínua/efeitos adversos , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/terapia , Acidente Vascular Cerebral/complicações , Extremidade Superior , Paresia , Resultado do Tratamento , Ensaios Clínicos Controlados Aleatórios como Assunto
4.
J Neurophysiol ; 129(2): 410-420, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36629338

RESUMO

Single-pulse transcranial magnetic stimulation (TMS) of the precentral hand representation (M1HAND) can elicit indirect waves in the corticospinal tract at a periodicity of ∼660 Hz, called I-waves. These descending volleys are produced by transsynaptic excitation of fast-conducting corticospinal axons in M1HAND. Paired-pulse TMS can induce short-interval intracortical facilitation (SICF) of motor evoked potentials (MEPs) at interpulse intervals that match I-wave periodicity. This study examined whether short-latency corticospinal facilitation engages additional mechanisms independently of I-wave periodicity. In 19 volunteers, one to four biphasic TMS pulses were applied to left M1HAND with interpulse intervals adjusted to the first peak or trough of the individual SICF curve at different intensities to probe the intensity-response relationship. Multipulse TMSHAND at individual peak latency facilitated MEP amplitudes and reduced resting motor threshold (RMT) compared with single pulses. Multipulse TMSHAND at individual trough latency also produced a consistent facilitation of MEPs and a reduction of RMT. Short-latency facilitation at trough latency was less pronounced, but the relative difference in facilitation decreased with increasing stimulus intensity. Increasing the pulse number had only a modest effect. Two mechanisms underlie short-latency facilitation caused by biphasic multipulse TMSHAND. One intracortical mechanism is related to I-wave periodicity and engages fast-conducting direct projections to spinal motoneurons. A second corticospinal mechanism does not rely on I-wave rhythmicity and may be mediated by slower-conducting indirect pyramidal tract projections from M1HAND to spinal interneurons. The latter mechanism deserves more attention in studies of the corticomotor system and its link to manual motor control using the MEP.NEW & NOTEWORTHY TMS pairs evoke SICF at interpulse intervals (IPIs) that match I-wave periodicity. Biphasic bursts with IPIs at the latency of the first peak facilitate MEPs and reduce corticomotor threshold. Bursts at the latency of the first trough facilitate MEPs and reduce corticomotor threshold to a lesser extent. TMS bursts facilitate corticomotor excitability via two mechanisms: SICF-dependently via fast-conducting direct projections from M1HAND to spinal motoneurons and SICF-independently, probably through slower-conducting indirect pyramidal tract projections.


Assuntos
Córtex Motor , Humanos , Córtex Motor/fisiologia , Estimulação Magnética Transcraniana , Tratos Piramidais , Neurônios Motores , Interneurônios , Potencial Evocado Motor/fisiologia , Eletromiografia , Músculo Esquelético/fisiologia
6.
Sci Rep ; 12(1): 9580, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35688875

RESUMO

Anodal transcranial direct current stimulation (aTDCS) of primary motor hand area (M1-HAND) can enhance corticomotor excitability, but it is still unknown which current intensity produces the strongest effect on intrinsic neural firing rates and synaptic activity. Magnetic resonance imaging (MRI) combined with pseudo-continuous Arterial Spin Labeling (pcASL MRI) can map regional cortical blood flow (rCBF). The measured rCBF signal is sensitive to regional changes in neuronal activity due to neurovascular coupling. Therefore, concurrent TDCS and pcASL MRI may reveal the relationship between current intensity and TDCS-induced changes in overall firing rates and synaptic activity in the cortical target. Here we employed pcASL MRI to map acute rCBF changes during short-duration aTDCS of left M1-HAND. Using the rCBF response as a proxy for regional neuronal activity, we investigated if short-duration aTDCS produces an instantaneous dose-dependent rCBF increase in the targeted M1-HAND that may be useful for individual dosing. Nine healthy right-handed participants received 30 s of aTDCS at 0.5, 1.0, 1.5, and 2.0 mA with the anode placed over left M1-HAND and cathode over the right supraorbital region. Concurrent pcASL MRI at 3 T probed TDCS-related rCBF changes in the targeted M1-HAND. Movement-induced rCBF changes were also assessed. Apart from a subtle increase in rCBF at 0.5 mA, short-duration aTDCS did not modulate rCBF in the M1-HAND relative to no-stimulation periods. None of the participants showed a dose-dependent increase in rCBF during aTDCS, even after accounting for individual differences in TDCS-induced electrical field strength. In contrast, finger movements led to robust activation of left M1-HAND before and after aTDCS. Short-duration bipolar aTDCS does not produce consistant instantaneous dose-dependent rCBF increases in the targeted M1-HAND at conventional intensity ranges. Therefore, the regional hemodynamic response profile to short-duration aTDCS may not be suited to inform individual dosing of TDCS intensity.


Assuntos
Córtex Motor , Estimulação Transcraniana por Corrente Contínua , Circulação Cerebrovascular , Eletrodos , Potencial Evocado Motor/fisiologia , Humanos , Córtex Motor/diagnóstico por imagem , Córtex Motor/fisiologia , Movimento/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Estimulação Magnética Transcraniana
7.
Clin Neurophysiol ; 140: 59-97, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35738037

RESUMO

Transcranial (electro)magnetic stimulation (TMS) is currently the method of choice to non-invasively induce neural activity in the human brain. A single transcranial stimulus induces a time-varying electric field in the brain that may evoke action potentials in cortical neurons. The spatial relationship between the locally induced electric field and the stimulated neurons determines axonal depolarization. The induced electric field is influenced by the conductive properties of the tissue compartments and is strongest in the superficial parts of the targeted cortical gyri and underlying white matter. TMS likely targets axons of both excitatory and inhibitory neurons. The propensity of individual axons to fire an action potential in response to TMS depends on their geometry, myelination and spatial relation to the imposed electric field and the physiological state of the neuron. The latter is determined by its transsynaptic dendritic and somatic inputs, intrinsic membrane potential and firing rate. Modeling work suggests that the primary target of TMS is axonal terminals in the crown top and lip regions of cortical gyri. The induced electric field may additionally excite bends of myelinated axons in the juxtacortical white matter below the gyral crown. Neuronal excitation spreads ortho- and antidromically along the stimulated axons and causes secondary excitation of connected neuronal populations within local intracortical microcircuits in the target area. Axonal and transsynaptic spread of excitation also occurs along cortico-cortical and cortico-subcortical connections, impacting on neuronal activity in the targeted network. Both local and remote neural excitation depend critically on the functional state of the stimulated target area and network. TMS also causes substantial direct co-stimulation of the peripheral nervous system. Peripheral co-excitation propagates centrally in auditory and somatosensory networks, but also produces brain responses in other networks subserving multisensory integration, orienting or arousal. The complexity of the response to TMS warrants cautious interpretation of its physiological and behavioural consequences, and a deeper understanding of the mechanistic underpinnings of TMS will be critical for advancing it as a scientific and therapeutic tool.


Assuntos
Encéfalo , Estimulação Magnética Transcraniana , Potenciais de Ação , Encéfalo/fisiologia , Consenso , Potencial Evocado Motor/fisiologia , Humanos , Neurônios/fisiologia
8.
Conscious Cogn ; 101: 103307, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35447600

RESUMO

Functional magnetic resonance imaging (fMRI) studies on the sense of agency (SoA) have yielded heterogeneous findings identifying regional brain activity during tasks that probed SoA. In this review, we argue that the reason behind this between-study heterogeneity is a "synecdochic" way the field conceptualizes and studies SoA. Typically, a single feature is experimentally manipulated and then this is interpreted as covering all aspects of SoA. The purpose of this paper is to give an overview of the fMRI studies of SoA and attempt to provide meaningful categories whereby the heterogeneous findings may be classified. This classification is based on a separation of the experimental paradigms (Feedback Manipulations of ongoing movements, Action-Effect, and Sensory Attenuation) and type of report employed (implicit, explicit reports of graded or dichotic nature, and whether these concern self-other distinctions or sense of control). We only find that Feedback Manipulation and Action-Effect share common activation in supplementary motor area, insula and cerebellum in positive SoA and inferior frontal gyrus in the negative SoA, but observe large networks related to SoA only in Feedback Manipulation studies. To illustrate the advantages of this approach, we discuss the findings from an fMRI study which we conducted, within this framework.

9.
Eur J Appl Physiol ; 122(6): 1459-1471, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35366090

RESUMO

PURPOSE: Fatigue is frequent in adults with cerebral palsy (CP) and it is unclear whether this is due to altered corticospinal drive. We aimed to compare changes in corticospinal drive following sustained muscle contractions in adults with CP and neurologically intact (NI) adults. METHODS: Fourteen adults with CP [age 37.6 (10.1), seven females, GMFCS levels I-II] and ten NI adults [age 35.4 (10.3), 6 females] performed 1-min static dorsiflexion at 30% of maximal voluntary contraction (MVC) before and after a submaximal contraction at 60% MVC. Electroencephalography (EEG) and electromyography (EMG) from the anterior tibial muscle were analyzed to quantify the coupling, expressed by corticomuscular coherence (CMC). RESULTS: Adults with CP had lower MVCs but similar time to exhaustion during the relative load of the fatigability trial. Both groups exhibited fatigability-related changes in EMG median frequency and EMG amplitude. The CP group showed lower beta band (16-35 Hz) CMC before fatigability, but both groups decreased beta band CMC following fatigability. There was a linear correlation between decrease of beta band CMC and fatigability-related increase in EMG. CONCLUSION: Fatigability following static contraction until failure was related to decreased beta band CMC in both NI adults and adults with CP. Our findings indicate that compensatory mechanisms to fatigability are present in both groups, and that fatigability affects the corticospinal drive in the same way. We suggest that the perceived physical fatigue in CP is related to the high relative load of activities of daily living rather than any particular physiological mechanism.


Assuntos
Paralisia Cerebral , Córtex Motor , Atividades Cotidianas , Adulto , Eletroencefalografia , Eletromiografia , Fadiga , Feminino , Humanos , Contração Isométrica/fisiologia , Córtex Motor/fisiologia , Músculo Esquelético/fisiologia
10.
Elife ; 102021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34121656

RESUMO

Human dexterous motor control improves from childhood to adulthood, but little is known about the changes in cortico-cortical communication that support such ontogenetic refinement of motor skills. To investigate age-related differences in connectivity between cortical regions involved in dexterous control, we analyzed electroencephalographic data from 88 individuals (range 8-30 years) performing a visually guided precision grip task using dynamic causal modelling and parametric empirical Bayes. Our results demonstrate that bidirectional coupling in a canonical 'grasping network' is associated with precision grip performance across age groups. We further demonstrate greater backward coupling from higher-order to lower-order sensorimotor regions from late adolescence in addition to differential associations between connectivity strength in a premotor-prefrontal network and motor performance for different age groups. We interpret these findings as reflecting greater use of top-down and executive control processes with development. These results expand our understanding of the cortical mechanisms that support dexterous abilities through development.


Assuntos
Encéfalo/fisiologia , Força da Mão/fisiologia , Destreza Motora/fisiologia , Adolescente , Adulto , Criança , Eletroencefalografia , Desenvolvimento Humano , Humanos , Vias Neurais/fisiologia , Adulto Jovem
11.
Brain Stimul ; 14(3): 713-722, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33848678

RESUMO

BACKGROUND: Electroencephalography (EEG) and single-pulse transcranial magnetic stimulation (spTMS) of the primary motor hand area (M1-HAND) have been combined to explore whether the instantaneous expression of pericentral mu-rhythm drives fluctuations in corticomotor excitability, but this line of research has yielded diverging results. OBJECTIVES: To re-assess the relationship between the mu-rhythm power expressed in left pericentral cortex and the amplitude of motor potentials (MEP) evoked with spTMS in left M1-HAND. METHODS: 15 non-preselected healthy young participants received spTMS to the motor hot spot of left M1-HAND. Regional expression of mu-rhythm was estimated online based on a radial source at motor hotspot and informed the timing of spTMS which was applied either during epochs belonging to the highest or lowest quartile of regionally expressed mu-power. Using MEP amplitude as dependent variable, we computed a linear mixed-effects model, which included mu-power and mu-phase at the time of stimulation and the inter-stimulus interval (ISI) as fixed effects and subject as a random effect. Mu-phase was estimated by post-hoc sorting of trials into four discrete phase bins. We performed a follow-up analysis on the same EEG-triggered MEP data set in which we isolated mu-power at the sensor level using a Laplacian montage centered on the electrode above the M1-HAND. RESULTS: Pericentral mu-power traced as radial source at motor hot spot did not significantly modulate the MEP, but mu-power determined by the surface Laplacian did, showing a positive relation between mu-power and MEP amplitude. In neither case, there was an effect of mu-phase on MEP amplitude. CONCLUSION: The relationship between cortical oscillatory activity and cortical excitability is complex and minor differences in the methodological choices may critically affect sensitivity.


Assuntos
Excitabilidade Cortical , Córtex Motor , Eletroencefalografia , Potencial Evocado Motor , Humanos , Estimulação Magnética Transcraniana
12.
Front Hum Neurosci ; 15: 639274, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33762917

RESUMO

BACKGROUND: Transcranial direct current stimulation (TDCS) targeting the primary motor hand area (M1-HAND) may induce lasting shifts in corticospinal excitability, but after-effects show substantial inter-individual variability. Functional magnetic resonance imaging (fMRI) can probe after-effects of TDCS on regional neural activity on a whole-brain level. OBJECTIVE: Using a double-blinded cross-over design, we investigated whether the individual change in corticospinal excitability after TDCS of M1-HAND is associated with changes in task-related regional activity in cortical motor areas. METHODS: Seventeen healthy volunteers (10 women) received 20 min of real (0.75 mA) or sham TDCS on separate days in randomized order. Real and sham TDCS used the classic bipolar set-up with the anode placed over right M1-HAND. Before and after each TDCS session, we recorded motor evoked potentials (MEP) from the relaxed left first dorsal interosseus muscle after single-pulse transcranial magnetic stimulation(TMS) of left M1-HAND and performed whole-brain fMRI at 3 Tesla while participants completed a visuomotor tracking task with their left hand. We also assessed the difference in MEP latency when applying anterior-posterior and latero-medial TMS pulses to the precentral hand knob (AP-LM MEP latency). RESULTS: Real TDCS had no consistent aftereffects on mean MEP amplitude, task-related activity or motor performance. Individual changes in MEP amplitude, measured directly after real TDCS showed a positive linear relationship with individual changes in task-related activity in the supplementary motor area and AP-LM MEP latency. CONCLUSION: Functional aftereffects of classical bipolar anodal TDCS of M1-HAND on the motor system vary substantially across individuals. Physiological features upstream from the primary motor cortex may determine how anodal TDCS changes corticospinal excitability.

13.
Neuroimage ; 223: 117363, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32919057

RESUMO

Non-invasive transcranial stimulation of cerebellum and primary motor cortex (M1) has been shown to enhance motor learning. However, the mechanisms by which stimulation improves learning remain largely unknown. Here, we sought to shed light on the neural correlates of transcranial direct current stimulation (tDCS) during motor learning by simultaneously recording functional magnetic resonance imaging (fMRI). We found that right cerebellar tDCS, but not left M1 tDCS, led to enhanced sequence learning in the serial reaction time task. Performance was also improved following cerebellar tDCS compared to sham in a sequence production task, reflecting superior training effects persisting into the post-training period. These behavioral effects were accompanied by increased learning-specific activity in right M1, left cerebellum lobule VI, left inferior frontal gyrus and right inferior parietal lobule during cerebellar tDCS compared to sham. Despite the lack of group-level changes comparing left M1 tDCS to sham, activity increase in right M1, supplementary motor area, and bilateral middle frontal cortex, under M1 tDCS, was associated with better sequence performance. This suggests that lack of group effects in M1 tDCS relate to inter-individual variability in learning-related activation patterns. We further investigated how tDCS modulates effective connectivity in the cortico-striato-cerebellar learning network. Using dynamic causal modelling, we found altered connectivity patterns during both M1 and cerebellar tDCS when compared to sham. Specifically, during cerebellar tDCS, negative modulation of a connection from putamen to cerebellum was decreased for sequence learning only, effectively leading to decreased inhibition of the cerebellum. These results show specific effects of cerebellar tDCS on functional activity and connectivity in the motor learning network and may facilitate the optimization of motor rehabilitation involving cerebellar non-invasive stimulation.


Assuntos
Cerebelo/fisiologia , Aprendizagem/fisiologia , Córtex Motor/fisiologia , Desempenho Psicomotor/fisiologia , Putamen/fisiologia , Estimulação Transcraniana por Corrente Contínua , Adulto , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Vias Neurais/fisiologia , Tempo de Reação , Adulto Jovem
14.
Front Hum Neurosci ; 14: 310, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32922275

RESUMO

Introduction: Motor skill learning already triggers the functional reorganization of regional brain activity after short periods of training. Recent studies suggest that microstructural change may emerge at similar timescales, but the spatiotemporal profiles of functional and structural plasticity have rarely been traced in parallel. Recently, we demonstrated that 5 days of endoscopic skill training induces changes in task-related brain activity in the ventral premotor cortex (PMv) and other areas of the frontoparietal grasping network. Here, we analyzed microstructural data, collected during the same experiment to investigate if microstructural plasticity overlaps temporally and spatially with the training-induced changes in task-related brain activity. Materials and Methods: Thirty-nine students were divided into a full-routine group (n = 20), that underwent three endoscopy training sessions in the MR-scanner as well as a 5-day virtual reality (VR)-endoscopy training and a brief-routine group (n = 19), that only performed the in-scanner endoscopy training sessions. Diffusion Tensor Imaging (DTI)-derived fractional anisotropy (FA) and resting-state functional magnetic resonance imaging (rs-fMRI) were collected at baseline, after the first and after the last VR-training session. Results: The full-routine group showed significant FA changes in a left-hemispheric subcortical cluster underlying the PMv region, for which we previously demonstrated functional plasticity during endoscopy training in the same sample. Functional (task-related fMRI) and structural (FA) changes showed the largest change from the first to the second scan, suggesting similar temporal dynamics. In the full-routine group, the FA change in the subcortical cluster underlying the left PMv scaled positively with the individual improvement in endoscopic surgery. Conclusion: Microstructural white-matter plasticity mirrors the spatiotemporal profile of task-dependent plasticity during a 5-day course of endoscopy skill training. The observed similarities motivate future research on the interplay between functional and structural plasticity during early skill acquisition.

15.
Neuroimage ; 220: 117142, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32634591

RESUMO

Visuomotor adaptation (VMA) is a form of motor learning essential for performing day to day routines. Theoretical models and empirical evidence suggest a specific cortico-striato-cerebellar loop that mediates early and late learning in VMA. Here, we investigated dynamic changes in neural activity and connectivity when learning a novel visuomotor rotation using fMRI. We found that motor cortical regions, parietal cortex and cerebellum are recruited in the early phase of VMA, gradually reduce their activity as learning reaches plateau and rebound when the visuomotor rotation is removed. At this phase, dubbed de-adaptation, individual performance correlated with activity in motor and parietal cortex such that stronger activity was associated with better performance. Theory suggests that VMA is governed by the cortico-striato-cerebellar network during the early phase of learning and by the cortico-cerebellar loop at later stages. We tested this hypothesis using dynamic causal modelling and found distinct modulation of a cerebellar to dorsal premotor cortex (dPMC) loop. Specifically, the cerebellar to dPMC connection was modulated during adaptation, suggesting a release of inhibition and net excitatory effect of cerebellum on dPMC. The modulation of cerebellar to dPMC connection during de-adaptation was specifically related to behavioral learning parameter: stronger release of inhibition of the cerebellar to dPMC connection was associated with better de-adaptation. We interpret these findings to reflect dynamic interactions between representation of movement in cerebellum and visuomotor integration in dPMC.


Assuntos
Adaptação Fisiológica/fisiologia , Cerebelo/fisiologia , Córtex Motor/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Cerebelo/diagnóstico por imagem , Feminino , Humanos , Aprendizagem/fisiologia , Imageamento por Ressonância Magnética , Masculino , Modelos Neurológicos , Atividade Motora/fisiologia , Córtex Motor/diagnóstico por imagem , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Adulto Jovem
16.
Front Neurol ; 11: 193, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32431655

RESUMO

Objective: We employed dual-site TMS to test whether ipsilateral functional premotor-motor connectivity is altered in relapsing-remitting Multiple Sclerosis (RR-MS) and is related to central fatigue. Methods: Twelve patients with RR-MS and 12 healthy controls performed a visually cued Pinch-NoPinch task with their right hand. During the reaction time (RT) period of Pinch and No-Pinch trials, single-site TMS was applied to the left primary motor cortex (M1) or dual-site TMS was applied to the ipsilateral dorsal premotor cortex (PMd) and to M1. We traced context-dependent changes of corticospinal excitability and premotor-motor connectivity by measuring Motor-Evoked Potentials (MEPs) in the right first dorsal interosseus muscle. Central fatigue was evaluated with the Fatigue Scale for Motor and Cognitive Functions (FSMS). Results: In both groups, single-pulse TMS revealed a consistent increase in mean MEP amplitude during the Reaction Time (RT) period relative to a resting condition. Task-related corticospinal facilitation increased toward the end of the RT period in Pinch trials, while it decreased in No-Pinch trials. Again, this modulation of MEP facilitation by trial type was comparable in patients and controls. Dual-site TMS showed no significant effect of a conditioning PMd pulse on ipsilateral corticospinal excitability during the RT period in either group. However, patients showed a trend toward a relative attenuation in functional PMd-M1 connectivity at the end of the RT period in No-Pinch trials, which correlated positively with the severity of motor fatigue (r = 0.69; p = 0.007). Conclusions: Dynamic regulation of corticospinal excitability and ipsilateral PMd-M1 connectivity is preserved in patients with RR-MS. MS-related fatigue scales positively with an attenuation of premotor-to-motor functional connectivity during cued motor inhibition. Significance: The temporal, context-dependent modulation of ipsilateral premotor-motor connectivity, as revealed by dual-site TMS of ipsilateral PMd and M1, constitutes a promising neurophysiological marker of fatigue in MS.

17.
Front Psychol ; 11: 685, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32395113

RESUMO

The left inferior frontal gyrus (IFG) is a key region for language comprehension and production. Previous studies point to a preferential involvement of left anterior IFG (aIFG) in lexical and semantic processes, while the posterior IFG (pIFG) has been implicated in supporting syntactic and phonological processes. Here we used focal neuronavigated transcranial magnetic stimulation (TMS) to probe the functional involvement of left IFG in lexical and grammatical processing at the sentence level. We applied 10 Hz TMS effective or sham bursts to left aIFG and pIFG, while healthy volunteers performed an adjective-noun production task contrasting grammatical and lexical determiners. For each trial, we measured the time from the stimulus onset to the moment of articulation (response time) and the time from articulation onset to the end of articulation (duration). Focal TMS of IFG generally delayed response times. The TMS-induced delay in response times was relatively stronger for the grammatical condition compared to the lexical condition, when TMS targeted aIFG. Articulation of the determiner was generally shorter in trials presenting grammatical determiners relative to lexical determiners. The shorter articulation time for grammar determiners was facilitated by effective TMS to pIFG. Together, the effects of TMS on task performance provide novel evidence for a joint involvement of anterior and posterior parts of left IFG in implementing grammatical determiners during language production, suggesting an involvement of aIFG in the initiation and pIFG in the production of grammatically appropriate verbal responses at the sentence level.

18.
Neuroimage ; 218: 116982, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32450250

RESUMO

The control of ankle muscle force is an integral component of walking and postural control. Aging impairs the ability to produce force steadily and accurately, which can compromise functional capacity and quality of life. Here, we hypothesized that reduced force control in older adults would be associated with altered cortico-cortical communication within a network comprising the primary motor area (M1), the premotor cortex (PMC), parietal, and prefrontal regions. We examined electroencephalographic (EEG) responses from fifteen younger (20-26 â€‹yr) and fifteen older (65-73 â€‹yr) participants during a unilateral dorsiflexion force-tracing task. Dynamic Causal Modelling (DCM) and Parametric Empirical Bayes (PEB) were used to investigate how directed connectivity between contralateral M1, PMC, parietal, and prefrontal regions was related to age group and precision in force production. DCM and PEB analyses revealed that the strength of connections between PMC and M1 were related to ankle force precision and differed by age group. For young adults, bidirectional PMC-M1 coupling was negatively related to task performance: stronger backward M1-PMC and forward PMC-M1 coupling was associated with worse force precision. The older group exhibited deviations from this pattern. For the PMC to M1 coupling, there were no age-group differences in coupling strength; however, within the older group, stronger coupling was associated with better performance. For the M1 to PMC coupling, older adults followed the same pattern as young adults - with stronger coupling accompanied by worse performance - but coupling strength was lower than in the young group. Our results suggest that bidirectional M1-PMC communication is related to precision in ankle force production and that this relationship changes with aging. We argue that the observed differences reflect compensatory reorganization that counteracts age-related sensorimotor declines and contributes to maintaining performance.


Assuntos
Envelhecimento/fisiologia , Tornozelo/fisiologia , Encéfalo/fisiologia , Modelos Neurológicos , Vias Neurais/fisiologia , Adulto , Idoso , Fenômenos Biomecânicos , Eletroencefalografia , Feminino , Humanos , Masculino , Atividade Motora/fisiologia , Equilíbrio Postural/fisiologia , Caminhada/fisiologia , Adulto Jovem
19.
Brain Stimul ; 12(5): 1261-1270, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31133479

RESUMO

BACKGROUND: The motor potentials evoked by transcranial magnetic stimulation (TMS) over the motor hand area (M1-HAND) show substantial inter-trial variability. Pericentral mu-rhythm oscillations, might contribute to inter-trial variability. Recent studies targeting mu-activity based on real-time electroencephalography (EEG) reported an influence of mu-power and mu-phase on the amplitude of motor evoked potentials (MEPs) in a preselected group with strong pericentral mu-activity. Other studies that determined mu-power or mu-phase based on post-hoc trial sorting according in non-preselected individuals were largely negative. OBJECTIVES: To reassess if cortico-spinal activity is modulated by the mu-rhythm, we applied single-pulse TMS to the M1-HAND conditional on the phase of the intrinsically expressed pericentral mu-rhythm in 14 non-preselected healthy young participants. METHODS: TMS was given at 0, 90, 180, and 270° of the mu-phase. Based on the absence of effects of mu-phase or mu-power when analyzing the mean MEP amplitudes, we also computed a linear mixed effects model, which included mu-phase, mu-power, inter-stimulus interval (ISIs) as fixed effects, treating the subject factor as a random effect. RESULTS: Mixed model analysis revealed a significant effect of mu-power and ISI, but no effect of mu-phase and no interactions. MEP amplitude scaled linearly with lower mu-power or longer ISIs, but these modulatory effects were very small relative to inter-trial MEP variability. CONCLUSION: Our largely negative results are in agreement with previous offline TMS-EEG studies and point to a possible influence of ISI. Future research needs to clarify under which circumstances the responsiveness of human the M1-HAND to TMS depends on the synchronicity with mu-power and mu-phase.


Assuntos
Ondas Encefálicas/fisiologia , Potencial Evocado Motor/fisiologia , Córtex Motor/fisiologia , Estimulação Magnética Transcraniana/métodos , Adulto , Eletroencefalografia/métodos , Eletromiografia/métodos , Feminino , Humanos , Masculino , Adulto Jovem
20.
Front Psychol ; 10: 213, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30837911

RESUMO

Transcranial electrical stimulation (TES) uses constant (TDCS) or alternating currents (TACS) to modulate brain activity. Most TES studies apply low-intensity currents through scalp electrodes (≤2 mA) using bipolar electrode arrangements, producing weak electrical fields in the brain (<1 V/m). Low-intensity TES has been employed in humans to induce changes in task performance during or after stimulation. In analogy to focal transcranial magnetic stimulation, TES-induced behavioral effects have often been taken as evidence for a causal involvement of the brain region underlying one of the two stimulation electrodes, often referred to as the active electrode. Here, we critically review the utility of bipolar low-intensity TES to localize human brain function. We summarize physiological substrates that constitute peripheral targets for TES and may mediate subliminal or overtly perceived peripheral stimulation during TES. We argue that peripheral co-stimulation may contribute to the behavioral effects of TES and should be controlled for by "sham" TES. We discuss biophysical properties of TES, which need to be considered, if one wishes to make realistic assumptions about which brain regions were preferentially targeted by TES. Using results from electric field calculations, we evaluate the validity of different strategies that have been used for selective spatial targeting. Finally, we comment on the challenge of adjusting the dose of TES considering dose-response relationships between the weak tissue currents and the physiological effects in targeted cortical areas. These considerations call for caution when attributing behavioral effects during or after low-intensity TES studies to a specific brain region and may facilitate the selection of best practices for future TES studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA