Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(20)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36295371

RESUMO

Biphasic macroporous Hydroxyapatite/ß-Tricalcium Phosphate (HA/ß-TCP) scaffolds (BCPs) are widely used for bone repair. However, the high-temperature HA and ß-TCP phases exhibit limited bioactivity (low solubility of HA, restricted surface area, low ion release). Strategies were developed to coat such BCPs with biomimetic apatite to enhance bioactivity. However, this can be associated with poor adhesion, and metastable solutions may prove difficult to handle at the industrial scale. Alternative strategies are thus desirable to generate a highly bioactive surface on commercial BCPs. In this work, we developed an innovative "coating from" approach for BCP surface remodeling via hydrothermal treatment under supercritical CO2, used as a reversible pH modifier and with industrial scalability. Based on a set of complementary tools including FEG-SEM, solid state NMR and ion exchange tests, we demonstrate the remodeling of macroporous BCP surface with the occurrence of dissolution-reprecipitation phenomena involving biomimetic CaP phases. The newly precipitated compounds are identified as bone-like nanocrystalline apatite and octacalcium phosphate (OCP), both known for their high bioactivity character, favoring bone healing. We also explored the effects of key process parameters, and showed the possibility to dope the remodeled BCPs with antibacterial Cu2+ ions to convey additional functionality to the scaffolds, which was confirmed by in vitro tests. This new process could enhance the bioactivity of commercial BCP scaffolds via a simple and biocompatible approach.

2.
J Tissue Eng Regen Med ; 16(12): 1149-1162, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36205495

RESUMO

Biofilm formation on an implant surface is most commonly caused by the human pathogenic bacteria Staphylococcus aureus, which can lead to implant related infections and failure. It is a major problem for both implantable orthopedic and maxillofacial devices. The current antibiotic treatments are typically delivered orally or in an injectable form. They are not highly effective in preventing or removing biofilms, and they increase the risk of antibiotic resistance of bacteria and have a dose-dependent negative biological effect on human cells. Our aim was to improve current treatments via a localized and controlled antibiotic delivery-based implant coating system to deliver the antibiotic, gentamicin (Gm). The coating contains coral skeleton derived hydroxyapatite powders (HAp) that act as antibiotic carrier particles and have a biodegradable poly-lactic acid (PLA) thin film matrix. The system is designed to prevent implant related infections while avoiding the deleterious effects of high concentration antibiotics in implants on local cells including primary human adipose derived stem cells (ADSCs). Testing undertaken in this study measured the rate of S. aureus biofilm formation and determined the growth rate and proliferation of ADSCs. After 24 h, S. aureus biofilm formation and the percentage of live cells found on the surfaces of all 5%-30% (w/w) PLA-Gm-(HAp-Gm) coated Ti6Al4V implants was lower than the control samples. Furthermore, Ti6Al4V implants coated with up to 10% (w/w) PLA-Gm-(HAp-Gm) did not have noticeable Gm related adverse effect on ADSCs, as assessed by morphological and surface attachment analyses. These results support the use and application of the antibacterial PLA-Gm-(HAp-Gm) thin film coating design for implants, as an antibiotic release control mechanism to prevent implant-related infections.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Antibacterianos/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Infecções Estafilocócicas/prevenção & controle , Infecções Estafilocócicas/microbiologia , Gentamicinas/farmacologia , Poliésteres/farmacologia , Técnicas In Vitro , Ácido Láctico/farmacologia
3.
Mater Sci Eng C Mater Biol Appl ; 104: 109757, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31499987

RESUMO

Post-operative infection often occurs following orthopedic and dental implant placement requiring systemically administered antibiotics. However, this does not provide long-term protection. Over the last few decades, alternative methods involving slow drug delivery systems based on biodegradable poly-lactic acid and antibiotic loaded hydroxyapatite microspheres were developed to prevent post-operative infection. In this study, thermally anodised and untreated Ti6Al4V discs were coated with Poly-Lactic Acid (PLA) containing Gentamicin (Gm) antibiotic-loaded coralline Hydroxyapatite (HAp) are investigated. Following chemical characterization, mechanical properties of the coated samples were measured using nanoindentation and scratch tests to determine the elastic modulus, hardness and bonding adhesion between film and substrate. It was found that PLA biocomposite multilayered films were around 400nm thick and the influence and effect of the substrate were clearly observed during the nanoindentation studies with heavier loads. Scratch tests of PLA coated samples conducted at ~160nm depth showed the minimal difference in the measured friction between Gm and non Gm containing films. It is also observed that the hardness values of PLA film coated anodised samples ranged from 0.45 to 1.9GPa (dependent on the applied loads) against untreated coated samples which ranged from 0.28 to 0.8GPa.


Assuntos
Anti-Infecciosos/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Sistemas de Liberação de Medicamentos , Teste de Materiais , Metais/química , Próteses e Implantes , Ligas , Testes de Sensibilidade Microbiana , Nanopartículas/química , Poliésteres/química , Espectroscopia de Infravermelho com Transformada de Fourier , Titânio/farmacologia
4.
J Mol Graph Model ; 84: 125-133, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29960255

RESUMO

Increasing resistance against available orthosteric beta-lactamase inhibitors necessitates the search for novel and powerful inhibitor molecules. In this respect, allosteric inhibitors serve as attractive alternatives. Here, we examine the structural basis of inhibition in a hidden, druggable pocket in TEM-1 beta-lactamase. Based on crystallographic evidence that 6-cyclohexyl-1-hexyl-ß-D-maltoside (CYMAL-6) binds to this site, first we determined the kinetic mechanism of inhibition by CYMAL-6. Activity measurements with CYMAL-6 showed that it competitively inhibits the wild type enzyme. Interestingly, it exhibits a steep dose-response curve with an IC50 of 100 µM. The IC50 value changes neither with different enzyme concentration nor with incubation of the enzyme with the inhibitor, showing that inhibition is not aggregation-based. The presence of the same concentrations of CYMAL-6 does not influence the activity of lactate dehydrogenase, further confirming the specificity of CYMAL-6 for TEM-1 beta-lactamase. Then, we identified compounds with high affinity to this allosteric site by virtual screening using Glide and Schrödinger Suite. Virtual screening performed with 500,000 drug like compounds from the ZINC database showed that top scoring compounds interact with the hydrophobic pocket that forms between H10 and H11 helices and with the catalytically important Arg244 residue through pi-cation interactions. Discovery of novel chemical scaffolds that target this allosteric site will pave the way for a new avenue in the design of new antimicrobials.


Assuntos
Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de beta-Lactamases/química , beta-Lactamases/química , Sítio Alostérico/efeitos dos fármacos , Sítios de Ligação , Hidrólise , Cinética , L-Lactato Desidrogenase/química , Ligação Proteica , Inibidores de beta-Lactamases/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA