Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neurol Genet ; 10(3): e200143, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38817246

RESUMO

Background and Objectives: Epilepsies are associated with differences in cortical thickness (TH) and surface area (SA). However, the mechanisms underlying these relationships remain elusive. We investigated the extent to which these phenotypes share genetic influences. Methods: We analyzed genome-wide association study data on common epilepsies (n = 69,995) and TH and SA (n = 32,877) using Gaussian mixture modeling MiXeR and conjunctional false discovery rate (conjFDR) analysis to quantify their shared genetic architecture and identify overlapping loci. We biologically interrogated the loci using a variety of resources and validated in independent samples. Results: The epilepsies (2.4 k-2.9 k variants) were more polygenic than both SA (1.8 k variants) and TH (1.3 k variants). Despite absent genome-wide genetic correlations, there was a substantial genetic overlap between SA and genetic generalized epilepsy (GGE) (1.1 k), all epilepsies (1.1 k), and juvenile myoclonic epilepsy (JME) (0.7 k), as well as between TH and GGE (0.8 k), all epilepsies (0.7 k), and JME (0.8 k), estimated with MiXeR. Furthermore, conjFDR analysis identified 15 GGE loci jointly associated with SA and 15 with TH, 3 loci shared between SA and childhood absence epilepsy, and 6 loci overlapping between SA and JME. 23 loci were novel for epilepsies and 11 for cortical morphology. We observed a high degree of sign concordance in the independent samples. Discussion: Our findings show extensive genetic overlap between generalized epilepsies and cortical morphology, indicating a complex genetic relationship with mixed-effect directions. The results suggest that shared genetic influences may contribute to cortical abnormalities in epilepsies.

2.
medRxiv ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38585944

RESUMO

Objective: Cognitive impairment is prevalent among individuals with epilepsy, and it is possible that genetic factors can underlie this relationship. Here, we investigated the potential shared genetic basis of common epilepsies and general cognitive ability (COG). Methods: We applied linkage disequilibrium score (LDSC) regression, MiXeR and conjunctional false discovery rate (conjFDR) to analyze different aspects of genetic overlap between COG and epilepsies. We used the largest available genome-wide association study data on COG (n = 269,867) and common epilepsies (n = 27,559 cases, 42,436 controls), including the broad phenotypes 'all epilepsy', focal epilepsies and genetic generalized epilepsies (GGE), and as well as specific subtypes. We functionally annotated the identified loci using a variety of biological resources and validated the results in independent samples. Results: Using MiXeR, COG (11.2k variants) was estimated to be almost four times more polygenic than 'all epilepsy', GGE, juvenile myoclonic epilepsy (JME), and childhood absence epilepsy (CAE) (2.5k - 2.9k variants). The other epilepsy phenotypes were insufficiently powered for analysis. We show extensive genetic overlap between COG and epilepsies with significant negative genetic correlations (-0.23 to -0.04). COG was estimated to share 2.9k variants with both GGE and 'all epilepsy', and 2.3k variants with both JME and CAE. Using conjFDR, we identified 66 distinct loci shared between COG and epilepsies, including novel associations for GGE (27), 'all epilepsy' (5), JME (5) and CAE (5). The implicated genes were significantly expressed in multiple brain regions. The results were validated in independent samples (COG: p = 1.0 × 10-14; 'all epilepsy': p = 5.6 × 10-3). Significance: Our study demonstrates a substantial genetic basis shared between epilepsies and COG and identifies novel overlapping genomic loci. Enhancing our understanding of the relationship between epilepsies and COG may lead to the development of novel comorbidity-targeted epilepsy treatments.

4.
Psychoneuroendocrinology ; 157: 106368, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37659117

RESUMO

C-reactive protein (CRP) tends to be elevated in individuals with psychiatric disorders. Recent findings have suggested a protective effect of the genetic liability to elevated CRP on schizophrenia risk and a causative effect on depression despite weak genetic correlations, while causal relationships with bipolar disorder were inconclusive. We investigated the shared genetic underpinnings of psychiatric disorders and variation in CRP levels. Genome-wide association studies for CRP (n = 575,531), bipolar disorder (n = 413,466), depression (n = 480,359), and schizophrenia (n = 130,644) were used in causal mixture models to compare CRP with psychiatric disorders based on polygenicity, discoverability, and genome-wide genetic overlap. The conjunctional false discovery rate method was used to identify specific shared genetic loci. Shared variants were mapped to putative causal genes, which were tested for overrepresentation among gene ontology gene-sets. CRP was six to ten times less polygenic (n = 1400 vs 8600-14,500 variants) and had a discoverability one to two orders of magnitude higher than psychiatric disorders. Most CRP-associated variants were overlapping with psychiatric disorders. We identified 401 genetic loci jointly associated with CRP and psychiatric disorders with mixed effect directions. Gene-set enrichment analyses identified predominantly CNS-related gene sets for CRP and each of depression and schizophrenia, and basic cellular processes for CRP and bipolar disorder. In conclusion, CRP has a markedly different genetic architecture to psychiatric disorders, but the majority of CRP associated variants are also implicated in psychiatric disorders. Shared genetic loci implicated CNS-related processes to a greater extent than immune processes, which may have implications for how we conceptualise causal relationships between CRP and psychiatric disorders.


Assuntos
Transtorno Bipolar , Transtornos Mentais , Esquizofrenia , Humanos , Proteína C-Reativa/genética , Estudo de Associação Genômica Ampla , Transtornos Mentais/genética , Esquizofrenia/genética , Transtorno Bipolar/genética , Transtorno Bipolar/psicologia , Polimorfismo de Nucleotídeo Único/genética , Predisposição Genética para Doença/genética
5.
Nat Hum Behav ; 7(9): 1584-1600, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37365406

RESUMO

Personality and cognitive function are heritable mental traits whose genetic foundations may be distributed across interconnected brain functions. Previous studies have typically treated these complex mental traits as distinct constructs. We applied the 'pleiotropy-informed' multivariate omnibus statistical test to genome-wide association studies of 35 measures of neuroticism and cognitive function from the UK Biobank (n = 336,993). We identified 431 significantly associated genetic loci with evidence of abundant shared genetic associations, across personality and cognitive function domains. Functional characterization implicated genes with significant tissue-specific expression in all tested brain tissues and brain-specific gene sets. We conditioned independent genome-wide association studies of the Big 5 personality traits and cognitive function on our multivariate findings, boosting genetic discovery in other personality traits and improving polygenic prediction. These findings advance our understanding of the polygenic architecture of these complex mental traits, indicating a prominence of pleiotropic genetic effects across higher order domains of mental function such as personality and cognitive function.


Assuntos
Estudo de Associação Genômica Ampla , Personalidade , Humanos , Personalidade/genética , Fenótipo , Herança Multifatorial/genética , Cognição
6.
Addict Biol ; 28(6): e13282, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37252880

RESUMO

Opioid use disorder (OUD) and mental disorders are often comorbid, with increased morbidity and mortality. The causes underlying this relationship are poorly understood. Although these conditions are highly heritable, their shared genetic vulnerabilities remain unaccounted for. We applied the conditional/conjunctional false discovery rate (cond/conjFDR) approach to analyse summary statistics from independent genome wide association studies of OUD, schizophrenia (SCZ), bipolar disorder (BD) and major depression (MD) of European ancestry. Next, we characterized the identified shared loci using biological annotation resources. OUD data were obtained from the Million Veteran Program, Yale-Penn and Study of Addiction: Genetics and Environment (SAGE) (15 756 cases, 99 039 controls). SCZ (53 386 cases, 77 258 controls), BD (41 917 cases, 371 549 controls) and MD (170 756 cases, 329 443 controls) data were provided by the Psychiatric Genomics Consortium. We discovered genetic enrichment for OUD conditional on associations with SCZ, BD, MD and vice versa, indicating polygenic overlap with identification of 14 novel OUD loci at condFDR < 0.05 and 7 unique loci shared between OUD and SCZ (n = 2), BD (n = 2) and MD (n = 7) at conjFDR < 0.05 with concordant effect directions, in line with estimated positive genetic correlations. Two loci were novel for OUD, one for BD and one for MD. Three OUD risk loci were shared with more than one psychiatric disorder, at DRD2 on chromosome 11 (BD and MD), at FURIN on chromosome 15 (SCZ, BD and MD) and at the major histocompatibility complex region (SCZ and MD). Our findings provide new insights into the shared genetic architecture between OUD and SCZ, BD and MD, indicating a complex genetic relationship, suggesting overlapping neurobiological pathways.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Esquizofrenia , Humanos , Transtorno Bipolar/genética , Transtorno Depressivo Maior/genética , Estudo de Associação Genômica Ampla , Esquizofrenia/genética , Depressão , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único , Loci Gênicos
7.
Schizophr Bull ; 49(6): 1654-1664, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37163672

RESUMO

Low vitamin D (vitD) levels have been consistently reported in schizophrenia (SCZ) suggesting a role in the etiopathology. However, little is known about the role of underlying shared genetic mechanisms. We applied a conditional/conjunctional false discovery rate approach (FDR) on large, nonoverlapping genome-wide association studies for SCZ (N cases = 53 386, N controls = 77 258) and vitD serum concentration (N = 417 580) to evaluate shared common genetic variants. The identified genomic loci were characterized using functional analyses and biological repositories. We observed cross-trait SNP enrichment in SCZ conditioned on vitD and vice versa, demonstrating shared genetic architecture. Applying the conjunctional FDR approach, we identified 72 loci jointly associated with SCZ and vitD at conjunctional FDR < 0.05. Among the 72 shared loci, 40 loci have not previously been reported for vitD, and 9 were novel for SCZ. Further, 64% had discordant effects on SCZ-risk and vitD levels. A mixture of shared variants with concordant and discordant effects with a predominance of discordant effects was in line with weak negative genetic correlation (rg = -0.085). Our results displayed shared genetic architecture between SCZ and vitD with mixed effect directions, suggesting overlapping biological pathways. Shared genetic variants with complex overlapping mechanisms may contribute to the coexistence of SCZ and vitD deficiency and influence the clinical picture.


Assuntos
Estudo de Associação Genômica Ampla , Esquizofrenia , Humanos , Estudo de Associação Genômica Ampla/métodos , Vitamina D/genética , Esquizofrenia/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Loci Gênicos
8.
Lancet Psychiatry ; 10(6): 441-451, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37208114

RESUMO

BACKGROUND: The relationship between psychotic disorders and cannabis use is heavily debated. Shared underlying genetic risk is one potential explanation. We investigated the genetic association between psychotic disorders (schizophrenia and bipolar disorder) and cannabis phenotypes (lifetime cannabis use and cannabis use disorder). METHODS: We used genome-wide association summary statistics from individuals with European ancestry from the Psychiatric Genomics Consortium, UK Biobank, and International Cannabis Consortium. We estimated heritability, polygenicity, and discoverability of each phenotype. We performed genome-wide and local genetic correlations. Shared loci were identified and mapped to genes, which were tested for functional enrichment. Shared genetic liabilities to psychotic disorders and cannabis phenotypes were explored using causal analyses and polygenic scores, using the Norwegian Thematically Organized Psychosis cohort. FINDINGS: Psychotic disorders were more heritable than cannabis phenotypes and more polygenic than cannabis use disorder. We observed positive genome-wide genetic correlations between psychotic disorders and cannabis phenotypes (range 0·22-0·35) with a mixture of positive and negative local genetic correlations. Three to 27 shared loci were identified for the psychotic disorder and cannabis phenotype pairs. Enrichment of mapped genes implicated neuronal and olfactory cells as well as drug-gene targets for nicotine, alcohol, and duloxetine. Psychotic disorders showed a causal effect on cannabis phenotypes, and lifetime cannabis use had a causal effect on bipolar disorder. Of 2181 European participants from the Norwegian Thematically Organized Psychosis cohort applied in polygenic risk score analyses, 1060 (48·6%) were females and 1121 (51·4%) were males (mean age 33·1 years [SD 11·8]). 400 participants had bipolar disorder, 697 had schizophrenia, and 1044 were healthy controls. Within this sample, polygenic scores for cannabis phenotypes predicted psychotic disorders independently and improved prediction beyond the polygenic score for the psychotic disorders. INTERPRETATION: A subgroup of individuals might have a high genetic risk of developing a psychotic disorder and using cannabis. This finding supports public health efforts to reduce cannabis use, particularly in individuals at high risk or patients with psychotic disorders. Identified shared loci and their functional implications could facilitate development of novel treatments. FUNDING: US National Institutes of Health, the Research Council Norway, the South-East Regional Health Authority, Stiftelsen Kristian Gerhard Jebsen, EEA-RO-NO-2018-0535, European Union's Horizon 2020 Research and Innovation Programme, the Marie Sklodowska-Curie Actions, and University of Oslo Life Science.


Assuntos
Transtorno Bipolar , Cannabis , Abuso de Maconha , Esquizofrenia , Transtornos Relacionados ao Uso de Substâncias , Animais , Esquizofrenia/epidemiologia , Esquizofrenia/genética , Transtorno Bipolar/epidemiologia , Transtorno Bipolar/genética , Estudo de Associação Genômica Ampla , Abuso de Maconha/epidemiologia , Abuso de Maconha/genética , Predisposição Genética para Doença/genética
9.
Brain ; 146(8): 3392-3403, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36757824

RESUMO

Psychiatric disorders and common epilepsies are heritable disorders with a high comorbidity and overlapping symptoms. However, the causative mechanisms underlying this relationship are poorly understood. Here we aimed to identify overlapping genetic loci between epilepsy and psychiatric disorders to gain a better understanding of their comorbidity and shared clinical features. We analysed genome-wide association study data for all epilepsies (n = 44 889), genetic generalized epilepsy (n = 33 446), focal epilepsy (n = 39 348), schizophrenia (n = 77 096), bipolar disorder (n = 406 405), depression (n = 500 199), attention deficit hyperactivity disorder (n = 53 293) and autism spectrum disorder (n = 46 350). First, we applied the MiXeR tool to estimate the total number of causal variants influencing the disorders. Next, we used the conjunctional false discovery rate statistical framework to improve power to discover shared genomic loci. Additionally, we assessed the validity of the findings in independent cohorts, and functionally characterized the identified loci. The epilepsy phenotypes were considerably less polygenic (1.0 K to 3.4 K causal variants) than the psychiatric disorders (5.6 K to 13.9 K causal variants), with focal epilepsy being the least polygenic (1.0 K variants), and depression having the highest polygenicity (13.9 K variants). We observed cross-trait genetic enrichment between genetic generalized epilepsy and all psychiatric disorders and between all epilepsies and schizophrenia and depression. Using conjunctional false discovery rate analysis, we identified 40 distinct loci jointly associated with epilepsies and psychiatric disorders at conjunctional false discovery rate <0.05, four of which were associated with all epilepsies and 39 with genetic generalized epilepsy. Most epilepsy risk loci were shared with schizophrenia (n = 31). Among the identified loci, 32 were novel for genetic generalized epilepsy, and two were novel for all epilepsies. There was a mixture of concordant and discordant allelic effects in the shared loci. The sign concordance of the identified variants was highly consistent between the discovery and independent datasets for all disorders, supporting the validity of the findings. Gene-set analysis for the shared loci between schizophrenia and genetic generalized epilepsy implicated biological processes related to cell cycle regulation, protein phosphatase activity, and membrane and vesicle function; the gene-set analyses for the other loci were underpowered. The extensive genetic overlap with mixed effect directions between psychiatric disorders and common epilepsies demonstrates a complex genetic relationship between these disorders, in line with their bi-directional relationship, and indicates that overlapping genetic risk may contribute to shared pathophysiological and clinical features between epilepsy and psychiatric disorders.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Epilepsias Parciais , Epilepsia Generalizada , Humanos , Transtorno do Espectro Autista/genética , Estudo de Associação Genômica Ampla , Epilepsias Parciais/genética , Genômica , Epilepsia Generalizada/genética , Loci Gênicos/genética , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único/genética
10.
Res Sq ; 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38196616

RESUMO

Alcohol use disorder (AUD) is highly heritable and burdensome worldwide. Genome-wide association studies (GWASs) can provide new evidence regarding the aetiology of AUD. We report a multi-ancestry GWASs across diverse ancestries focusing on a narrow AUD phenotype, using novel statistical tools in a total sample of 1,041,450 individuals [102,079 cases; European, 75,583; African, 20,689 (mostly African-American); Hispanic American, 3,449; East Asian, 2,254; South Asian, 104; descent]. Cross-ancestry functional analyses were performed with European and African samples. Thirty-seven genome-wide significant loci were identified, of which seven were novel for AUD and six for other alcohol phenotypes. Loci were mapped to genes enriched for brain regions relevant for AUD (striatum, hypothalamus, and prefrontal cortex) and potential drug targets (GABAergic, dopaminergic and serotonergic neurons). African-specific analysis yielded a unique pattern of immune-related gene sets. Polygenic overlap and positive genetic correlations showed extensive shared genetic architecture between AUD and both mental and general medical phenotypes, suggesting they are not only complications of alcohol use but also share genetic liability with AUD. Leveraging a cross-ancestry approach allowed identification of novel genetic loci for AUD and underscores the value of multi-ancestry genetic studies. These findings advance our understanding of AUD risk and clinically-relevant comorbidities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA