Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
J Mol Graph Model ; 131: 108803, 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38815531

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome encodes 29 proteins including four structural, 16 nonstructural (nsps), and nine accessory proteins (https://epimedlab.org/sars-cov-2-proteome/). Many of these proteins contain potential targetable sites for the development of antivirals. Despite the widespread use of vaccinations, the emergence of variants necessitates the investigation of new therapeutics and antivirals. Here, the EpiMed Coronabank Chemical Collection (https://epimedlab.org/crl/) was utilized to investigate potential antivirals against the nsp14 exoribonuclease (ExoN) domain. Molecular docking was performed to evaluate the binding characteristics of our chemical library against the nsp14 ExoN site. Based on the initial screen, trisjuglone, ararobinol, corilagin, and naphthofluorescein were identified as potential lead compounds. Molecular dynamics (MD) simulations were subsequently performed, with the results highlighting the stability of the lead compounds in the nsp14 ExoN site. Protein-RNA docking revealed the potential for the lead compounds to disrupt the interaction with RNA when bound to the ExoN site. Moreover, hypericin, cyanidin-3-O-glucoside, and rutin were previously identified as lead compounds targeting the papain-like protease (PLpro) naphthalene binding site. Through performing MD simulations, the stability and interactions of lead compounds with PLpro were further examined. Overall, given the critical role of the exonuclease activity of nsp14 in ensuring viral fidelity and the multifunctional role of PLpro in viral pathobiology and replication, these nsps represent important targets for antiviral drug development. Our databases can be utilized for in silico studies, such as the ones performed here, and this approach can be applied to other potentially druggable SARS-CoV-2 protein targets.

3.
Cells Dev ; 177: 203882, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37956740

RESUMO

Phosphorylated histone H2AX (γH2AX) represents a sensitive molecular marker of DNA double-strand breaks (DSBs) and is implicated in stem cell biology. We established a model of mouse embryonic stem cell (mESC) differentiation and examined the dynamics of γH2AX foci during the process. Our results revealed high numbers of γH2AX foci in undifferentiated mESCs, decreasing as the cells differentiated towards the endothelial cell lineage. Notably, we observed two distinct patterns of γH2AX foci: the typical discrete γH2AX foci, which colocalize with the transcriptionally permissive chromatin mark H3K4me3, and the less well-characterized clustered γH2AX regions, which were only observed in intermediate progenitor cells. Next, we explored responses of mESCs to γ-radiation (137Cs). Following exposure to γ-radiation, mESCs showed a reduction in cell viability and increased γH2AX foci, indicative of radiosensitivity. Despite irradiation, surviving mESCs retained their differentiation potential. To further exemplify our findings, we investigated neural stem progenitor cells (NSPCs). Similar to mESCs, NSPCs displayed clustered γH2AX foci associated with progenitor cells and discrete γH2AX foci indicative of embryonic stem cells or differentiated cells. In conclusion, our findings demonstrate that γH2AX serves as a versatile marker of DSBs and may have a role as a biomarker in stem cell differentiation. The distinct patterns of γH2AX foci in differentiating mESCs and NSPCs provide valuable insights into DNA repair dynamics during differentiation, shedding light on the intricate balance between genomic integrity and cellular plasticity in stem cells. Finally, the clustered γH2AX foci observed in intermediate progenitor cells is an intriguing feature, requiring further exploration.


Assuntos
Reparo do DNA , Células-Tronco Embrionárias Murinas , Animais , Camundongos , Reparo do DNA/genética , Quebras de DNA de Cadeia Dupla , Células-Tronco Embrionárias , Diferenciação Celular/genética
4.
J Mol Graph Model ; 126: 108666, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37976980

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic highlighted the importance of establishing systems and infrastructure to develop vaccines, antiviral drugs, and therapeutic antibodies against emerging pathogens. Typical drug discovery processes involve targeting suitable proteins to effect pathogen replication or to attenuate host responses, by examining either large chemical databases or protein-protein interactions. Following initial screens, molecular dynamics (MD) simulations are critical for gaining further insight into molecular interactions. During the COVID-19 pandemic, many research groups made their simulations widely available, as highlighted by the comprehensive D.E. Shaw Research trajectory database. To investigate protein target sites and evaluate potential lead compounds, we performed over 300 MD simulations relating to COVID-19. We organised our simulations into a repository, which is publicly available at https://epimedlab.org/trajectories/. The trajectories cover a large part of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteome, and the majority of our MD simulations focused on the identification of potential antivirals. For example, we focused on the S-adenosyl-l-methionine binding site of the nsp10-nsp16 complex, a critical component of viral replication, revealing verbascoside as a potential lead. Moreover, we utilised MD trajectories to explore the interface between the spike protein receptor binding domain and human angiotensin-converting enzyme 2 receptor, with the ultimate aim being investigation of new variants in real-time. Overall, MD simulations are a critical component of the in silico drug discovery process and as highlighted throughout the pandemic, data sharing enables accelerated progress. We have organised our extensive collection of COVID-19 related MD trajectories into an easily accessible repository.


Assuntos
COVID-19 , Humanos , Simulação de Dinâmica Molecular , SARS-CoV-2 , Pandemias , Antivirais/farmacologia , Antivirais/uso terapêutico , Antivirais/química
5.
Molecules ; 28(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38138436

RESUMO

Genetic abnormalities have been associated with primary aldosteronism, a major cause of secondary hypertension. This includes mutations in the KCNJ5 gene, which encodes G protein-gated inwardly rectifying K+ channel 4 (GIRK4). For example, the substitution of glycine with glutamic acid gives rise to the pathogenic GIRK4G151E mutation, which alters channel selectivity, making it more permeable to Na+ and Ca2+. While tertiapin and tertiapin-Q are well-known peptide inhibitors of the GIRK4WT channel, clinically, there is a need for the development of selective modulators of mutated channels, including GIRK4G151E. Using in silico methods, including homology modeling, protein-peptide docking, ligand-binding site prediction, and molecular docking, we aimed to explore potential modulators of GIRK4WT and GIRK4G151E. Firstly, protein-peptide docking was performed to characterize the binding site of tertiapin and its derivative to the GIRK4 channels. In accordance with previous studies, the peptide inhibitors preferentially bind to the GIRK4WT channel selectivity filter compared to GIRK4G151E. A ligand-binding site analysis was subsequently performed, resulting in the identification of two potential regions of interest: the central cavity and G-loop gate. Utilizing curated chemical libraries, we screened over 700 small molecules against the central cavity of the GIRK4 channels. Flavonoids, including luteolin-7-O-rutinoside and rutin, and the macrolides rapamycin and troleandomycin bound strongly to the GIRK4 channels. Similarly, xanthophylls, particularly luteoxanthin, bound to the central cavity with a strong preference towards the mutated GIRK4G151E channel compared to GIRK4WT. Overall, our findings suggest potential lead compounds for further investigation, particularly luteoxanthin, that may selectively modulate GIRK4 channels.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G , Hipertensão , Humanos , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/genética , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Ligantes , Simulação de Acoplamento Molecular , Proteínas de Ligação ao GTP/metabolismo , Peptídeos/metabolismo , Descoberta de Drogas
6.
Clin Exp Med ; 23(7): 3277-3298, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37615803

RESUMO

Announced on December 31, 2019, the novel coronavirus arising in Wuhan City, Hubei Province resulted in millions of cases and lives lost. Following intense tracking, coronavirus disease 2019 (COVID-19) was declared a pandemic by the World Health Organization (WHO) in 2020. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified as the cause of COVID-19 and the continuous evolution of the virus has given rise to several variants. In this review, a comprehensive analysis of the response to the pandemic over the first three-year period is provided, focusing on disease management, development of vaccines and therapeutics, and identification of variants. The transmissibility and pathogenicity of SARS-CoV-2 variants including Alpha, Beta, Gamma, Delta, and Omicron are compared. The binding characteristics of the SARS-CoV-2 spike protein to the angiotensin-converting enzyme 2 (ACE2) receptor and reproduction numbers are evaluated. The effects of major variants on disease severity, hospitalisation, and case-fatality rates are outlined. In addition to the spike protein, open reading frames mutations are investigated. We also compare the pathogenicity of SARS-CoV-2 with SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). Overall, this study highlights the strengths and weaknesses of the global response to the pandemic, as well as the importance of prevention and preparedness. Monitoring the evolution of SARS-CoV-2 is critical in identifying and potentially predicting the health outcomes of concerning variants as they emerge. The ultimate goal would be a position in which existing vaccines and therapeutics could be adapted to suit new variants in as close to real-time as possible.


Assuntos
COVID-19 , Vacinas , Humanos , COVID-19/epidemiologia , SARS-CoV-2/genética , Pandemias , Virulência , Gerenciamento Clínico
7.
J Mol Graph Model ; 125: 108602, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37597309

RESUMO

Antiviral drugs are important for the coronavirus disease 2019 (COVID-19) response, as vaccines and antibodies may have reduced efficacy against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. Antiviral drugs that have been made available for use, albeit with questionable efficacy, include remdesivir (Veklury®), nirmatrelvir-ritonavir (Paxlovid™), and molnupiravir (Lagevrio®). To expand the options available for COVID-19 and prepare for future pandemics, there is a need to investigate new uses for existing drugs and design novel compounds. To support these efforts, we have created a comprehensive library of 750 molecules that have been sourced from in vitro, in vivo, and in silico studies. It is publicly available at our dedicated website (https://epimedlab.org/crl/). The EpiMed Coronabank Chemical Collection consists of compounds that have been divided into 10 main classes based on antiviral properties, as well as the potential to be used for the management, prevention, or treatment of COVID-19 related complications. A detailed description of each compound is provided, along with the molecular formula, canonical SMILES, and U.S. Food and Drug Administration approval status. The chemical structures have been obtained and are available for download. Moreover, the pharmacokinetic properties of the ligands have been characterised. To demonstrate an application of the EpiMed Coronabank Chemical Collection, molecular docking was used to evaluate the binding characteristics of ligands against SARS-CoV-2 nonstructural and accessory proteins. Overall, our database can be used to aid the drug repositioning process, and for gaining further insight into the molecular mechanisms of action of potential compounds of interest.


Assuntos
Antivirais , COVID-19 , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Antivirais/química , SARS-CoV-2 , Simulação de Acoplamento Molecular , Ligantes
8.
Cell Mol Life Sci ; 80(9): 248, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37578596

RESUMO

Human erythroleukemic K562 cells represent the prototypical cell culture model of chronic myeloid leukemia (CML). The cells are pseudo-triploid and positive for the Philadelphia chromosome. Therefore, K562 cells have been widely used for investigating the BCR/ABL1 oncogene and the tyrosine kinase inhibitor, imatinib-mesylate. Further, K562 cells overexpress transferrin receptors (TfR) and have been used as a model for targeting cytotoxic therapies, via receptor-mediated endocytosis. Here, we have characterized K562 cells focusing on the karyotype of cells in prolonged culture, regulation of expression of TfR in wildtype (WT) and doxorubicin-resistant cells, and responses to histone deacetylase inhibition (HDACi). Karyotype analysis indicates novel chromosomes and gene expression analysis suggests a shift of cultured K562 cells away from patient-derived leukemic cells. We confirm the high expression of TfR on K562 cells using immunofluorescence and cell-surface receptor binding radioassays. Importantly, high TfR expression is observed in patient-derived cells, and we highlight the persistent expression of TfR following doxorubicin acquired resistance. Epigenetic analysis indicates that permissive histone acetylation and methylation at the promoter region regulates the transcription of TfR in K562 cells. Finally, we show relatively high expression of HDAC enzymes in K562 cells and demonstrate the chemotoxic effects of HDACi, using the FDA-approved hydroxamic acid, vorinostat. Together with a description of morphology, infrared spectral analysis, and examination of metabolic properties, we provide a comprehensive characterization of K562 cells. Overall, K562 cell culture systems remain widely used for the investigation of novel therapeutics for CML, which is particularly important in cases of imatinib-mesylate resistance.


Assuntos
Proteínas de Fusão bcr-abl , Leucemia Mielogênica Crônica BCR-ABL Positiva , Humanos , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Células K562 , Proteínas de Fusão bcr-abl/genética , Transferrina , Pirimidinas/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Histona Desacetilases/metabolismo , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Receptores da Transferrina/genética , Cromossomos/metabolismo , Mesilatos/farmacologia , Apoptose
9.
J Mol Graph Model ; 123: 108529, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37263157

RESUMO

The molecular clock is vital for regulating circadian rhythms in various physiological processes, and its dysregulation is associated with multiple diseases. As such, the use of small molecule modulators to regulate the molecular clock presents a promising therapeutic approach. In this study, we generated a homology model of the human circadian locomotor output cycles kaput (CLOCK) protein to evaluate its ligand binding sites. Using molecular docking, we obtained further insights into the binding mode of the control compound CLK8 and explored a selection of dietary compounds. Our investigation of dietary compounds was guided by their potential interactions with the retinoic acid-related orphan receptors RORα/γ, which are involved in circadian regulation. Through the molecular similarity and docking analyses, we identified oleanolic acid demethyl, 3-epi-lupeol, and taraxasterol as potential ROR-interacting compounds. These compounds may exert therapeutic effects through their modulation of RORα/γ activity and subsequently influence the molecular clock. Overall, our study highlights the potential of small molecule modulators in regulating the molecular clock and the importance of exploring dietary compounds as a source of such modulators. Our findings also provide insights into the binding mechanisms of CLK8 and shed light on potential compounds that can interact with RORs to regulate the molecular clock. Future investigations could focus on validating the efficacy of these compounds in modulating the molecular clock and their potential use as therapeutic agents.


Assuntos
Relógios Circadianos , Humanos , Relógios Circadianos/fisiologia , Simulação de Acoplamento Molecular , Ritmo Circadiano/fisiologia , Sítios de Ligação , Ligantes
10.
Crit Rev Food Sci Nutr ; 63(28): 9074-9097, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35503258

RESUMO

Lactoferrin is a protein, primarily found in milk that has attracted the interest of the food industries due to its health properties. Nevertheless, the instability of lactoferrin has limited its commercial application. Recent studies have focused on encapsulation to enhance the stability of lactoferrin. However, the molecular insights underlying the changes of structural properties of lactoferrin and the interaction with protectants remain poorly understood. Computational approaches have proven useful in understanding the structural properties of molecules and the key binding with other constituents. In this review, comprehensive information on the structure and function of lactoferrin and the binding with various molecules for food purposes are reviewed, with a special emphasis on the use of molecular dynamics simulations. The results demonstrate the application of modeling and simulations to determine key residues of lactoferrin responsible for its stability and interactions with other biomolecular components under various conditions, which are also associated with its functional benefits. These have also been extended into the potential creation of enhanced lactoferrin for commercial purposes. This review provides valuable strategies in designing novel nutraceuticals for food science practitioners and those who have interests in acquiring familiarity with the application of computational modeling for food and health purposes.


Assuntos
Suplementos Nutricionais , Lactoferrina , Animais , Lactoferrina/química , Leite/química , Modelos Moleculares
11.
J Biomol Struct Dyn ; 41(15): 7372-7385, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36093960

RESUMO

LF is a bioactive protein, derived from colostrum and milk that has been found to possess various immunomodulatory, iron chelating, and antimicrobial properties, especially in its apo-form. Recent studies have demonstrated the functionality of LF in attaching to the S proteins of SARS-CoV-2, thereby preventing it from interacting with the ACE-2 receptor. However, the molecular mechanism mediating the process is poorly understood. In this study, molecular docking and MD simulations coupled with free energy calculations were applied to elucidate the key interaction of apo-LF and its N-lobe and C-lobe derivative forms with the RBD of coronavirus S proteins. This has also been extended into evaluating the L452R mutant, which is associated with the delta variant of SARS-CoV-2. The results demonstrate the efficacy of the apo-LF C-lobe in binding to the RBD of both variants, primarily through electrostatic attractions between the acidic residues of the former and the basic residues of each RBD. Furthermore, due to the additional arginine in the L452R variant, the interaction between the C-lobe and the latter is stronger, resulting in a more favourable binding and tightly bound structure. The simulations highlight that the C-lobe, followed by full-length apo-LF can form a multimeric complex with the RBD of SARS-CoV-2, indicating their potential use as novel therapeutics, particularly the cleaved C-lobe of apo-LF to disrupt the S proteins from binding to the host ACE-2 receptor.Communicated by Ramaswamy H. Sarma.

12.
Cell Mol Life Sci ; 79(11): 579, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319916

RESUMO

Sulforaphane has been investigated in human pathologies and preclinical models of airway diseases. To provide further mechanistic insights, we explored L-sulforaphane (LSF) in the ovalbumin (OVA)-induced chronic allergic airways murine model, with key hallmarks of asthma. Histological analysis indicated that LSF prevented or reversed OVA-induced epithelial thickening, collagen deposition, goblet cell metaplasia, and inflammation. Well-known antioxidant and anti-inflammatory mechanisms contribute to the beneficial effects of LSF. Fourier transform infrared microspectroscopy revealed altered composition of macromolecules, following OVA sensitization, which were restored by LSF. RNA sequencing in human peripheral blood mononuclear cells highlighted the anti-inflammatory signature of LSF. Findings indicated that LSF may alter gene expression via an epigenetic mechanism which involves regulation of protein acetylation status. LSF resulted in histone and α-tubulin hyperacetylation in vivo, and cellular and enzymatic assays indicated decreased expression and modest histone deacetylase (HDAC) inhibition activity, in comparison with the well-known pan-HDAC inhibitor suberoylanilide hydroxamic acid (SAHA). Molecular modeling confirmed interaction of LSF and LSF metabolites with the catalytic domain of metal-dependent HDAC enzymes. More generally, this study confirmed known mechanisms and identified potential epigenetic pathways accounting for the protective effects and provide support for the potential clinical utility of LSF in allergic airways disease.


Assuntos
Antioxidantes , Hipersensibilidade , Camundongos , Humanos , Animais , Leucócitos Mononucleares , Ovalbumina , Epigênese Genética , Anti-Inflamatórios
13.
Comput Biol Med ; 149: 106035, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36055162

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) B.1.1.529 variant (Omicron), represents a significant deviation in genetic makeup and function compared to previous variants. Following the BA.1 sublineage, the BA.2 and BA.3 Omicron subvariants became dominant, and currently the BA.4 and BA.5, which are quite distinct variants, have emerged. Using molecular dynamics simulations, we investigated the binding characteristics of the Delta and Omicron (BA.1) variants in comparison to wild-type (WT) at the interface of the spike protein receptor binding domain (RBD) and human angiotensin converting enzyme-2 (ACE2) ectodomain. The primary aim was to compare our molecular modelling systems with previously published observations, to determine the robustness of our approach for rapid prediction of emerging future variants. Delta and Omicron were found to bind to ACE2 with similar affinities (-39.4 and -43.3 kcal/mol, respectively) and stronger than WT (-33.5 kcal/mol). In line with previously published observations, the energy contributions of the non-mutated residues at the interface were largely retained between WT and the variants, with F456, F486, and Y489 having the strongest energy contributions to ACE2 binding. Further, residues N440K, Q498R, and N501Y were predicted to be energetically favourable in Omicron. In contrast to Omicron, which had the E484A and K417N mutations, intermolecular bonds were detected for the residue pairs E484:K31 and K417:D30 in WT and Delta, in accordance with previously published findings. Overall, our simplified molecular modelling approach represents a step towards predictive model systems for rapidly analysing arising variants of concern.


Assuntos
Enzima de Conversão de Angiotensina 2/química , SARS-CoV-2/química , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/genética , Humanos , Simulação de Dinâmica Molecular , Mutação , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Ligação Proteica , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
14.
J Mol Graph Model ; 114: 108193, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35462185

RESUMO

Although vaccines that provide protection against severe illness from coronavirus disease (COVID-19) have been made available, emerging variant strains of severe acute respiratory syndrome 2 coronavirus 2 (SARS-CoV-2) are of concern. A different research direction involves investigation of antiviral therapeutics. In addition to structural proteins, the SARS-CoV-2 non-structural proteins are of interest and this includes the helicase (nsp13). In this study, an initial screen of 300 ligands was performed to identify potential inhibitors of the SARS-CoV-2 nsp13 examining the nucleoside triphosphatase site (NTPase activity) as the target region. The antiviral activity of polyphenols has been previously reported in the literature and as a result, the phenolic compounds and fatty acids from the OliveNet™ library were utilised. Synthetic compounds with antimicrobial and anti-inflammatory properties were also selected. The structures of the SARS-CoV and MERS-CoV helicases, as well as the human RECQ-like DNA helicase, DHX9 helicase, PcrA helicase, hepatitis C NS3 helicase, and mouse Dna2 nuclease-helicase were used for comparison. As expected, sequence and structural homology between the various species was evident. A number of broad-spectrum and well-known inhibitors interacted with the NTPase active site highlighting the need to potentially identify more specific inhibitors for SARS-CoV-2. Acetylcysteine, clavulanic acid and homovanillic acid were identified as potential lead compounds for the SARS-CoV-2 helicase. Molecular dynamics simulations were performed with the leads bound to the SARS-CoV-2 helicase for 200 ns in triplicate, with favourable binding free energies to the NTPase site. Given their availability, further exploration of their potential inhibitory activity could be considered.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Animais , Antivirais/química , Antivirais/farmacologia , DNA Helicases/metabolismo , Humanos , Camundongos , Simulação de Dinâmica Molecular , Nucleosídeo-Trifosfatase/metabolismo , RNA Helicases/química , RNA Helicases/metabolismo
15.
J Mol Graph Model ; 112: 108116, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35026665

RESUMO

OBJECTIVE: Oxidative stress is one of the pathophysiological mechanisms implicated in drug-resistant epilepsy. Recurrent seizures and prolonged treatment with anti-seizure medicines (ASMs) can produce reactive oxygen species (ROS) resulting in neuronal cell damage, cell toxicity, and cell death. This damage may contribute to the loss of efficacy of anti-seizure medicines. Add-on therapy with antioxidants, neuroimmunophilins, and polyphenols may thus be beneficial in drug-resistant epilepsy. In vitro and in vivo studies have shown a significant improvement in drug efficacy and seizure suppression using co-treatment of anti-seizure medication with naturally available antioxidants including alpha-lipoic acid (α-lipoic acid) from walnut; however, the underlying mechanisms of action remain to be fully understood. METHODS: We undertook molecular docking and molecular dynamics simulations to determine whether alpha-lipoic acid and related analogues interacted with the human manganese superoxide dismutase (MnSOD) protein, a member of the oxidative metabolic pathway. The 3D structure of the compounds and the protein were retrieved from protein and chemical databases, binding sites were identified and ligand-protein interactions were performed. RESULTS: Alpha-lipoic acid and various analogues docked within a human MnSOD binding region. Docking results were validated by molecular dynamic simulation. The CMX-2043 analogue showed strong binding with MnSOD compared to alpha-lipoic acid and other analogues. SIGNIFICANCE: Our findings provide new insights into additional mechanisms of action, which may in part, account for the antioxidant properties associated with alpha-lipoic acid and related analogues. The results support further in vitro and in vivo evaluation of these compounds to better understand their potential as add-on therapy for ASM treatment in epilepsy.


Assuntos
Epilepsia , Ácido Tióctico , Antioxidantes/farmacologia , Epilepsia/tratamento farmacológico , Humanos , Simulação de Acoplamento Molecular , Oxirredução , Ácido Tióctico/metabolismo , Ácido Tióctico/farmacologia
16.
Comput Biol Med ; 142: 105247, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35077933

RESUMO

BACKGROUND: As highlighted in the OliveNet™ library, Olea europaea consists of a diverse collection of chemical compounds. We have classified over 600 compounds into 13 main classes and 47 subclasses. Various compounds, including oleuropein and hydroxytyrosol, have been investigated for their potential beneficial effects in multiple human pathologies. However, the vast majority of compounds remain largely unexplored and approximately 50% are currently non-commercially available. METHOD: Here, we utilise conventional software to characterise the absorption, distribution, metabolism, excretion, and toxicity profile of OliveNet™ compounds. Molecular docking was performed for assessment of P-glycoprotein (P-gp) inhibition and interactions with the human ether-à-go-go-related gene (hERG) channel. Potential hERG ion channel inhibition was calibrated using in vitro patch clamp assays and steered molecular dynamics (SMD) simulations were used to examine membrane permeability of a subset of compounds. RESULTS: Our findings indicated that 313 out of 675 olive compounds were predicted to be absorbed by the gastrointestinal tract. Hydroxytyrosol required the least amount of force to pass through the lipid bilayer compared to elenolic acid diglucoside in SMD simulations. Based on the ADMET and molecular docking data, the hERG inhibitory activities of verbascoside, oleuropein, and hydroxytyrosol were investigated using patch clamp assays and they were identified as non-inhibitors. CONCLUSIONS: While the favourable properties of well-known compounds were confirmed, we identified oleuropein aglycone decarboxymethyl dialdehyde acetal form, decarboxymethyl elenolic acid dialdehyde, acetal of decarboxymethyl elenolic acid dialdehyde, methyl malate-ß-hydroxytyrosol ester, hydroxytyrosil elenolate, D-(+)-erythro-1-(4-hydroxy-3-methoxy)-214-phenyl-1,2,3-propantriol, (+)-1-acetoxypinoresinol-4″-O-methyl ether, and 3-[1-(hydroxymethyl)-(E)-1-propenyl] glutaric acid as potential candidates for synthesis and further evaluation.


Assuntos
Olea , Humanos , Simulação de Acoplamento Molecular , Olea/química
17.
Chem Phys Lett ; 788: 139294, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-34961797

RESUMO

The SARS-CoV-2 papain-like (PLpro) protease is essential for viral replication. We investigated potential antiviral effects of hypericin relative to the well-known noncovalent PLpro inhibitor GRL-0617. Molecular dynamics and PELE Monte Carlo simulations highlight favourable binding of hypericin and GRL-0617 to the naphthalene binding pocket of PLpro. Although not potent as GRL-0617 (45.8 vs 1.6 µM for protease activity, respectively), in vitro fluorogenic enzymatic assays with hypericin show concentration-dependent inhibition of both PLpro protease and deubiquitinating activities. Given its use in supplementations and the FDA conditional approval of a synthetic version, further evaluation of hypericin as a potential SARS-CoV-2 antiviral is warranted.

18.
J Mol Graph Model ; 110: 108050, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34655918

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the ongoing COVID-19 pandemic. With some notable exceptions, safe and effective vaccines, which are now being widely distributed globally, have largely begun to stabilise the situation. However, emerging variants of concern and vaccine hesitancy are apparent obstacles to eradication. Therefore, the need for the development of potent antivirals is still of importance. In this context, the SARS-CoV-2 main protease (Mpro) is a critical target and numerous clinical trials, predominantly in the private domain, are currently in progress. Here, our aim was to extend our previous studies, with hypericin and cyanidin-3-O-glucoside, as potential inhibitors of the SARS-CoV-2 Mpro. Firstly, we performed all-atom microsecond molecular dynamics simulations, which highlight the stability of the ligands in the Mpro active site over the duration of the trajectories. We also invoked PELE Monte Carlo simulations which indicate that both hypericin and cyanidin-3-O-glucoside preferentially interact with the Mpro active site and known allosteric sites. For further validation, we performed an in vitro enzymatic activity assay that demonstrated that hypericin and cyanidin-3-O-glucoside inhibit Mpro activity in a dose-dependent manner at biologically relevant (µM) concentrations. However, both ligands are much less potent than the well-known covalent antiviral GC376, which was used as a positive control in our experiments. Nevertheless, the biologically relevant activity of hypericin and cyanidin-3-O-glucoside is encouraging. In particular, a synthetic version of hypericin has FDA orphan drug designation, which could simplify potential clinical evaluation in the context of COVID-19.


Assuntos
COVID-19 , Pandemias , Antivirais/farmacologia , Proteases 3C de Coronavírus , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Método de Monte Carlo , Inibidores de Proteases/farmacologia , SARS-CoV-2
19.
Phys Chem Chem Phys ; 24(1): 112-121, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34889929

RESUMO

The versatility of DNA minor groove binding bibenzimidazoles extends to applications in cancer therapy, beyond their typical use as DNA stains. In the context of UVA phototherapy, a series of halogenated analogues designated ortho-, meta-, and para-iodoHoechst have been investigated. Phototoxicity involves dehalogenation of the ligands following exposure to UVA light, resulting in the formation of a carbon-centred radical. While the cytotoxic mechanisms have been well established, the nature and severity of DNA damage induced by the ortho-, meta-, and para-iodoHoechst isomers requires clarification. Our aims were to measure and compare the binding constants of iodoHoechst analogues, and to determine the proximity of the carbon-centred radicals formed following photodehalogenation to the C1', C4', and C5' DNA carbons. We performed molecular docking studies, as well as classical molecular dynamics simulations to investigate the interactions of Hoechst ligands with DNA including a well-defined B-DNA dodecamer containing the high affinity AATT minor groove binding site. Docking highlighted the binding of Hoechst analogues to AATT regions in oligonucleotides, nucleosomes, and origami DNA helical bundles. Further, MD simulations demonstrated the stability of Hoechst ligands in the AATT-containing minor groove over microsecond trajectories. Our findings reiterate that the efficiency of dehalogenation per se, rather than the proximity of the carbon-centred radicals to the DNA backbone, is responsible for the extreme phototoxicity of the ortho- isomer compared to the meta- and para-iodoHoechst isomers. More generally, our analyses are in line with the potential utility of ortho-iodoHoechst in DNA-targeted phototherapy, particularly if combined with a cell-specific delivery system.


Assuntos
Bisbenzimidazol/química , DNA/química , Simulação de Acoplamento Molecular , Sítios de Ligação
20.
Int J Antimicrob Agents ; 58(6): 106460, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34695564

RESUMO

L-sulforaphane (LSF) is an isothiocyanate derived from cruciferous vegetables that has long been known for its anticarcinogenic, antioxidant and anti-inflammatory effects. LSF also possesses antimicrobial properties, although the evidence for this is limited. Respiratory pathogens, such as Streptococcus pneumoniae, Haemophilus influenzae, Streptococcus pyogenes and respiratory syncytial virus (RSV), are leading global causes of illness and death among children aged under five years, particularly in resource-poor countries where access to vaccines are limited or, in the case of S. pyogenes and RSV, vaccines have not been licensed for use in humans. Therefore, alternative strategies to prevent and/or treat these common infectious diseases are urgently needed. This study was conducted to investigate the antimicrobial effects of LSF against common respiratory pathogens, S. pneumoniae (serotypes 1 and 6B), H. influenzae type B (HiB), non-typeable H. influenzae (NTHi), S. pyogenes and RSV in relevant human cell-based models. LSF significantly inhibited the growth of H. influenzae, but not S. pneumoniae or S. pyogenes. LSF did not improve opsonophagocytic capacity or killing by human phagocytic cell lines (HL-60s and THP-1 macrophages) for S. pneumoniae yet showed some improved killing for H. influenzae species in THP-1 macrophages. However, LSF significantly reduced RSV infection in human lung epithelial cells, associated with increased expression of cyclin D1 (CCND1) gene as well as the antioxidant genes, nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HMOX-1). Overall, LSF represents an exciting avenue for further antimicrobial research, particularly as a novel therapy against H. influenzae species and RSV.


Assuntos
Antibacterianos/farmacologia , Infecções por Haemophilus/tratamento farmacológico , Isotiocianatos/farmacologia , Infecções Pneumocócicas/tratamento farmacológico , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Infecções Respiratórias/tratamento farmacológico , Sulfóxidos/farmacologia , Linhagem Celular , Ciclina D1/metabolismo , Células HL-60 , Haemophilus influenzae/efeitos dos fármacos , Haemophilus influenzae/crescimento & desenvolvimento , Heme Oxigenase-1/metabolismo , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Testes de Sensibilidade Microbiana , Fator 2 Relacionado a NF-E2/metabolismo , Opsonização/efeitos dos fármacos , Vírus Sinciciais Respiratórios/efeitos dos fármacos , Infecções Respiratórias/microbiologia , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/crescimento & desenvolvimento , Streptococcus pyogenes/efeitos dos fármacos , Streptococcus pyogenes/crescimento & desenvolvimento , Células THP-1 , Verduras/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA