Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 434(22): 167832, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36210597

RESUMO

Regulation of Aberrant Protein Production (RAPP) is a protein quality control in mammalian cells. RAPP degrades mRNAs of nascent proteins not able to associate with their natural interacting partners during synthesis at the ribosome. However, little is known about the molecular mechanism of the pathway, its substrates, or its specificity. The Signal Recognition Particle (SRP) is the first interacting partner for secretory proteins. It recognizes signal sequences of the nascent polypeptides when they are exposed from the ribosomal exit tunnel. Here, we reveal the generality of the RAPP pathway on the whole transcriptome level through depletion of human SRP54, an SRP subunit. This depletion triggers RAPP and leads to decreased expression of the mRNAs encoding a number of secretory and membrane proteins. The loss of SRP54 also leads to the dramatic upregulation of a specific network of HSP70/40/90 chaperones (HSPA1A, DNAJB1, HSP90AA1, and others), increased ribosome associated ubiquitination, and change in expression of RPS27 and RPS27L suggesting ribosome rearrangement. These results demonstrate the complex nature of defects in protein trafficking, mRNA and protein quality control, and provide better understanding of their mechanisms at the ribosome.


Assuntos
Ribossomos , Partícula de Reconhecimento de Sinal , Estresse Fisiológico , Humanos , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Peptídeos/metabolismo , Biossíntese de Proteínas , Sinais Direcionadores de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Partícula de Reconhecimento de Sinal/genética , Partícula de Reconhecimento de Sinal/metabolismo , Ribossomos/metabolismo , Estabilidade de RNA
2.
J Vis Exp ; (134)2018 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-29683462

RESUMO

Proper protein expression at the right time and in the right amounts is the basis of normal cell function and survival in a fast-changing environment. For a long time, the gene expression studies were dominated by research on the transcriptional level. However, the steady-state levels of mRNAs do not correlate well with protein production, and the translatability of mRNAs varies greatly depending on the conditions. In some organisms, like the parasite Leishmania, the protein expression is regulated mostly at the translational level. Recent studies demonstrated that protein translation dysregulation is associated with cancer, metabolic, neurodegenerative and other human diseases. Polysome profiling is a powerful method to study protein translation regulation. It allows to measure the translational status of individual mRNAs or examine translation on a genome-wide scale. The basis of this technique is the separation of polysomes, ribosomes, their subunits and free mRNAs during centrifugation of a cytoplasmic lysate through a sucrose gradient. Here, we present a universal polysome profiling protocol used on three different models - parasite Leishmania major, cultured human cells and animal tissues. Leishmania cells freely grow in suspension and cultured human cells grow in adherent monolayer, while mouse testis represents an animal tissue sample. Thus, the technique is adapted to all of these sources. The protocol for the analysis of polysomal fractions includes detection of individual mRNA levels by RT-qPCR, proteins by Western blot and analysis of ribosomal RNAs by electrophoresis. The method can be further extended by examination of mRNAs association with the ribosome on a transcriptome level by deep RNA-seq and analysis of ribosome-associated proteins by mass spectroscopy of the fractions. The method can be easily adjusted to other biological models.


Assuntos
Leishmania/crescimento & desenvolvimento , Polirribossomos/genética , Testículo/crescimento & desenvolvimento , Animais , Perfilação da Expressão Gênica , Humanos , Masculino , Camundongos , Testículo/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA