Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Genet ; 1022023.
Artigo em Inglês | MEDLINE | ID: mdl-37674283

RESUMO

Vanishing of white matter (VWM) is a hereditary heterogeneous brain disorder that most often affects children. However, the onset of the disease varies from childhood to adulthood. VWM is caused by mutations in one of the five genes encoding subunits of the eukaryotic initiation factor eIF2B. In the current study, we aimed to determine the genetic cause of VWM in a large consanguineous Iranian family with three affected members. Next-generation sequencing was conducted on the proband to determine the underlying cause of VWM. The identified variant was validated by PCR-Sanger sequencing in the patient and was also segregated in his parents and two other affected members of the pedigree. The potential functional effects of this mutation within EIF2B5 were predicted by in silico analysis. We have also reviewed all EIF2B5 disease-causing variants and available clinical features of each patient reported in HGMD Professional 2022.2. A novel homozygous variant c.746T>G [p.Ile249Ser] was detected in EIF2B5 which was co-segregated with the disease in all affected family members in an autosomal recessive manner. All employed in silico prediction tools and 3D structure analysis for the novel mutation also supported the pathogenicity of this variant. Our study not only expanded the spectrum of the pathogenic variants in EIF2B5 but also presented a literature review on EIF2B5-related conditions that provide a comprehensive picture of the genetic nature of this gene and phenotypic variability in patients.


Assuntos
Leucoencefalopatias , Criança , Humanos , Adolescente , Adulto Jovem , Irã (Geográfico) , Consanguinidade , Leucoencefalopatias/genética , Mutação de Sentido Incorreto , Mutação , Fator de Iniciação 2B em Eucariotos/genética
2.
Allergy Asthma Clin Immunol ; 19(1): 29, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37038193

RESUMO

BACKGROUND: Caspase-8 is a molecule in the FAS pathway that initiates apoptosis. One of the rarest autoimmune lymphoproliferative syndromes is caspase-8 deficiency. Immunodeficiency, splenomegaly, and lymphadenopathy are the common symptoms of this condition. CASE PRESENTATION: A two-year-old boy entered this study with a fever of unknown origin (FUO) and dysentery. Moreover, he suffered from failure to thrive and was allergic to the cow's milk protein. His fever and dysentery did not respond to antibiotic therapy. The colonoscopy revealed diffuse ulcerations regions in the sigmoid along with skipped areas, mimicking Crohn's disease aphthous lesions. He represented very early-onset inflammatory bowel disease (IBD) and was diagnosed with the caspase-8 deficiency. CONCLUSION: There can be diarrhea or dysentery as the first or main symptoms of inborn errors of immunity (IEIs). The cause of diarrhea and dysentery in this case was early-onset IBD. One of the symptoms of IEIs such as caspase-8 deficiency is early-onset of IBD. Patients with early-onset had normal T cell count and low or normal immunoglobulin levels with insufficient immune response.

3.
Iran J Child Neurol ; 16(1): 123-133, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222663

RESUMO

OBJECTIVES: Bardet-Biedl syndrome (BBS) is an autosomal recessive pleiotropic ciliopathy, which includes multi-organ clinical manifestations. The known genes involved in the development of the disease account for the causality in about 80% of the examined cases. MATERIALS & METHODS: We investigated two Iranian unrelated clinically diagnosed BBS patients, using a targeted next-generation sequencing panel consisting of 18 known BBS genes. The detected variants were investigated in the pedigree and studied using in silico tools for their pathogenicity. Patients' phenotypes were also assessed. RESULTS: Novel homozygous variants were detected in BBS9 gene in each patient, c.2014C>T, p.Gln672Ter and c.673_674insAA, p.Gln225GlnfsX10. The variants were segregated in the corresponding pedigree and were authenticated to obtain enough evidence to be categorized as pathogenic variants. CONCLUSION: Patients with truncating mutations in the same gene seem to show similar phenotypic features. Detection of novel and family-specific mutations is typically expected in the genetic hereditary diseases in Iran, which can finally lead to prevent the recurrence of the disease in the consanguineous marriages.

4.
Allergy Asthma Clin Immunol ; 17(1): 107, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635152

RESUMO

BACKGROUND: Severe combined immunodeficiency (SCID) is a group of relatively rare primary immunodeficiency disorders (PIDs), characterized by disturbed development of T cells and B cells, caused by several genetic mutations that bring on different clinical presentations. SCID may be inherited as an autosomal recessive or an X-linked genetic trait. CASE PRESENTATION: A 6-year-old male presented with a history of food allergy, productive coughs, and recurrent purulent rhinitis, poor weight gain and hypothyroidism. The total count of CD4+ T lymphocytes, along with their naïve and central memory subpopulations, as well as central memory CD8+ T cells were decreased in flow cytometry. A nucleotide substitution in exon one of interleukin 2 receptor gamma chain (IL-2RG) gene (c.115 G>A, p.D39N, ChrX: 70,331,275) was reported, based on which the diagnosis of X-liked SCID was confirmed. Antiviral and antibiotic prophylaxis, along with monthly IVIG (intravenous immunoglobulin) was started and the patient was subsequently referred for hematopoietic stem cell transplantation. CONCLUSION: PIDs should be considered as the differential diagnosis in any patient with unexplained and bizarre symptoms associated with recurrent infections, allergic and autoimmune manifestations. Clinicians should also bear X-SCID in mind in case of approach to any patient with poor weight gain, unusual allergic or endocrine manifestations, even in the case of a normal or increased level of serum immunoglobulins or T and B cells numbers.

5.
Rep Biochem Mol Biol ; 10(2): 280-287, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34604417

RESUMO

BACKGROUND: Dilated cardiomyopathy (DCM) is a progressive heart condition characterized by left ventricular chamber enlargement associated with systolic heart failure and prolonged action potential duration. Genetic variations in genes that encode cytoskeleton, sarcomere, and nuclear envelope proteins are responsible for 45% of cases. In our study, we focused on a pedigree with familial DCM to decipher the potential genetic cause(s) in affected members developing arrhythmia, end-stage heart failure, and sudden death. METHODS: Whole-exome sequencing (WES) was exploited for a 27-year-old heart-transplanted female as the proband, and the derived data were filtered using the standard pipelines. RESULTS: A 57-nucleotide deletion (c.405_422+39del) in the desmoplakin gene (DSP) (NM_004415.4) was identified as a novel pathogenic variant. Familial segregation analysis indicated that this variant is present in clinically affected members and absent in unaffected members. CONCLUSION: It seems that the detected variant induces intron retention, resulting in a premature stop codon in intron 3 of DSP leading to production of a truncated, nonfunctional protein. Additionally, it can trigger a nonsense-mediated mRNA decay pathway associated with inhibition of protein production. The present study results illustrated that a novel deletion in DSP can cause DCM in an Iranian family.

6.
J Pediatr Genet ; 10(3): 230-235, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34504727

RESUMO

Introduction Familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC) is a rare disorder caused by perturbation in renal reabsorption of magnesium and calcium. Biallelic pathogenic variants either in gene CLDN16 or CLDN19 are responsible for molecular defects. Most patients with CLDN19 variants have been associated with ocular involvements (FHHNCOI). Patient and Methods We had a pediatric patient with hypercalciuric hypomagnesemia and bilateral chorioretinal atrophy. Metabolic profiling and radiology examinations were performed, in addition to whole exome sequencing (WES) used for detection of the causative variant. Results Analysis of WES revealed a homozygous c.223G > A (p.G75S) variant in CLDN19 . MutationTaster and Combined Annotation-Dependent Depletion support its deleterious effect and SHERLOC's criteria put it in pathogenic category. This variant is previously reported in compound heterozygous state with other known pathogenic variant. As far as we know, it is the first report of this variant in homozygous state. Conclusion The variant found in our patient is pathogenic and compatible with FHHNCOI characteristics. WES is an advantageous tool in molecular diagnosis and finding genetic pathology of this disease. In line with other reports, ocular abnormalities are variable in patients with CLDN19 mutations, and chronic kidney disease and retinal damages must be considered in this group.

7.
Mol Biol Rep ; 48(6): 5339-5345, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34191236

RESUMO

Joubert syndrome (JS) is a rare inherited neurodevelopmental condition characterized by hypotonia, ataxia, developmental delay, abnormal eye movements, neonatal respiratory disturbance and unique midbrain-hindbrain malformation, known as the molar tooth sign. JS is a genetically heterogeneous disorder with nearly 35 ciliary genes are implicated in its pathogenesis. AHI1 gene is one of the most frequently mutated gene in JS patients which is accounted for 8-11% of cases, particularly in Arab population. AHI1 encodes a cilium-localized protein with a significant role in mediating vesicle trafficking, ciliogenesis and cell polarity. Here, we report a novel pathogenic variant in AHI1 gene and review previously published mutations in AHI1 gene briefly. Whole exome sequencing was employed to determine the causative mutation in an Iranian Arab family with JS from southwestern Iran. Segregation analysis of the candidate variant in the family members was performed using PCR-Sanger sequencing. This approach found a novel homozygous nonsense variant c.832C > T (p.Gln278Ter) in AHI1. Segregation analysis was consistent with individual's phenotype and an autosomal recessive pattern in the family. The variant residing in a relatively highly conserved region and fulfilled the criteria required to be classified as a pathogenic variant based on American College of Medical Genetics and Genomics guidelines. This study confirms the diagnosis of JS in this family and highlights the efficiency of next-generation sequencing-based technique to identify the genetic causes of hereditary disorders with locus heterogeneity.


Assuntos
Anormalidades Múltiplas/genética , Proteínas Adaptadoras de Transporte Vesicular/genética , Cerebelo/anormalidades , Anormalidades do Olho/genética , Doenças Renais Císticas/genética , Retina/anormalidades , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Adulto , Cílios/metabolismo , Feminino , Genótipo , Homozigoto , Humanos , Lactente , Irã (Geográfico) , Masculino , Pessoa de Meia-Idade , Mutação , Linhagem , Fenótipo , Sequenciamento do Exoma
8.
Iran J Child Neurol ; 14(4): 111-116, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193791

RESUMO

Succinate dehydrogenase (SDH) deficiency is a rare autosomal recessive neurometabolic disorder that causes brain insult, neurodevelopmental delay, exercise intolerance, and cardiomyopathy. A 25-month-old boy was referred to our neurometabolic center due to developmental regression after injecting the influenza vaccine when he was 10 months old. Magnetic resonance imaging (MRI) showed high signal changes in the brain white matter, and magnetic resonance spectroscopy (MRS) detected a high succinate peak at 2.4 parts per million (ppm). The evaluation of urine organic acids showed a significant elevated succinic acid and whole exome sequencing, confirming SDH. Treatment with a mitochondrial cocktail was initiated, and remarkable improvement was observed. SDH deficiency as a treatable neurometabolic disorder should be considered in any patients with developmental disorders, accompanied by hyperintensity in white matter (as similar to leukodystrophia). Further evaluation is recommended since outcomes depend on early diagnosis and treatment.

9.
J Clin Invest ; 130(8): 4423-4439, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32453716

RESUMO

Joubert syndrome (JBTS) is a recessive neurodevelopmental ciliopathy characterized by a pathognomonic hindbrain malformation. All known JBTS genes encode proteins involved in the structure or function of primary cilia, ubiquitous antenna-like organelles essential for cellular signal transduction. Here, we used the recently identified JBTS-associated protein armadillo repeat motif-containing 9 (ARMC9) in tandem-affinity purification and yeast 2-hybrid screens to identify a ciliary module whose dysfunction underlies JBTS. In addition to the known JBTS-associated proteins CEP104 and CSPP1, we identified coiled-coil domain containing 66 (CCDC66) and TOG array regulator of axonemal microtubules 1 (TOGARAM1) as ARMC9 interaction partners. We found that TOGARAM1 variants cause JBTS and disrupt TOGARAM1 interaction with ARMC9. Using a combination of protein interaction analyses, characterization of patient-derived fibroblasts, and analysis of CRISPR/Cas9-engineered zebrafish and hTERT-RPE1 cells, we demonstrated that dysfunction of ARMC9 or TOGARAM1 resulted in short cilia with decreased axonemal acetylation and polyglutamylation, but relatively intact transition zone function. Aberrant serum-induced ciliary resorption and cold-induced depolymerization in ARMC9 and TOGARAM1 patient cell lines suggest a role for this new JBTS-associated protein module in ciliary stability.


Assuntos
Anormalidades Múltiplas , Proteínas do Domínio Armadillo , Cerebelo/anormalidades , Cílios , Anormalidades do Olho , Doenças Renais Císticas , Retina/anormalidades , Proteínas de Peixe-Zebra , Peixe-Zebra , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/metabolismo , Acetilação , Animais , Proteínas do Domínio Armadillo/genética , Proteínas do Domínio Armadillo/metabolismo , Sistemas CRISPR-Cas , Cerebelo/metabolismo , Cílios/genética , Cílios/metabolismo , Modelos Animais de Doenças , Anormalidades do Olho/genética , Anormalidades do Olho/metabolismo , Humanos , Doenças Renais Císticas/genética , Doenças Renais Císticas/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Retina/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
10.
Iran Biomed J ; 23(5): 362-8, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31103025

RESUMO

Background: LLeber congenital amaurosis (LCA) is a rare inherited retinal disease causing severe visual impairment in infancy. It has been reported that 9-15% of LCA cases have mutations in CRB1 gene. The complex of CRB1 protein with other associated proteins affects the determination of cell polarity, orientation, and morphogenesis of photoreceptors. Here, we report three novel pathogenic variants in CRB1 gene and then briefly review the types, prevalence, and correlation of reported mutations in CRB1 gene. Methods: Whole exome sequencing and targeted gene panel were employed. Then validation in the patient and segregation analysis in affected and unaffected members was performed. Results: Our detected novel pathogenic variants (p.Glu703*, c.2128+1G>A and p.Ser758SerfsX33) in CRB1 gene were validated by Sanger sequencing. Segregation analysis confirmed the inheritance pattern of the pathogenic variants. Conclusion: Our findings show that emerging the next-generation sequencing-based techniques is very efficient in identifying causative variants in disorders with locus heterogeneity.


Assuntos
Proteínas do Olho/genética , Amaurose Congênita de Leber/genética , Proteínas de Membrana/genética , Mutação/genética , Proteínas do Tecido Nervoso/genética , Sequência de Bases , Proteínas do Olho/química , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Proteínas de Membrana/química , Proteínas do Tecido Nervoso/química , Linhagem , Domínios Proteicos
11.
Int J Pediatr Otorhinolaryngol ; 113: 229-233, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30173992

RESUMO

OBJECTIVES: Waardenburg Syndrome (WS) as a congenital auditory-pigmentary syndrome is a clinically and genetically heterogeneous disorder. Based upon clinical manifestations, it can be classified into four types. Loss of function mutations in PAX3 gene cause WS1 and WS3 (Klein-Waardenburg syndrome). While WS2 and WS4 have locus heterogeneity with multiple causative genes. Here we report a novel splice site variant in a pedigree with multiple affected members. Based on diagnostic criteria, three of them are associated with WS3. The remained patients classified as type 1. METHODS: PCR amplification and Sanger sequencing were performed for all exons and all exon-intron boundaries of PAX3 (NM_181,459) gene of the proband. Then available symptomatic and asymptomatic members were screened for the detected variant. Interpretation and classification of the variant were done based on the current guidelines. RESULTS: We identified a novel heterozygous splice site variant (c.586+2T > C) in donor site of intron 4 of PAX3 gene in our proband. Moreover, this variant was co-segregated with the disease in other available five affected members. Also, the detected variant was not detected in any of the investigated asymptomatic members. This variant was classified as a pathogenic variant. CONCLUSIONS: This study shows significant intra-familial clinical heterogeneity and absence of phenotype-genotype correlation in a pedigree with Waardenburg Syndrome. However, severity of phenotypes and additional symptoms in the patients can be related to alternative splicing and different levels of PAX3 gene expression. Detailed evaluation of more cases can shed light on this and case-reports are valuable traffic sign in the road. This article is the first report of Waardenburg syndrome type 3 in Iran.


Assuntos
Fator de Transcrição PAX3/genética , Síndrome de Waardenburg/genética , Feminino , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Irã (Geográfico) , Masculino , Mutação , Linhagem , Fenótipo , Reação em Cadeia da Polimerase , Splicing de RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA