Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37966257

RESUMO

Identification of neoepitopes that can control tumor growth in vivo remains a challenge even 10 y after the first genomics-defined cancer neoepitopes were identified. In this study, we identify a neoepitope, resulting from a mutation in the junction plakoglobin (Jup) gene (chromosome 11), from the mouse colon cancer line MC38-FABF (C57BL/6). This neoepitope, Jup mutant (JupMUT), was detected during mass spectrometry of MHC class I-eluted peptides from the tumor. JupMUT has a predicted binding affinity of 564 nM for the Kb molecule and a higher predicted affinity of 82 nM for Db. However, whereas structural modeling of JupMUT and its unmutated counterpart Jup wild-type indicates that there are little conformational differences between the two epitopes bound to Db, large structural divergences are predicted between the two epitopes bound to Kb. Together with in vitro binding data with RMA-S cells, these data suggest that Kb rather than Db is the relevant MHC class I molecule of JupMUT. Immunization of naive C57BL/6 mice with JupMUT elicits CD8-dependent tumor control of a MC38-FABF challenge. Despite the CD8 dependence of JupMUT-mediated tumor control in vivo, CD8+ T cells from JupMUT-immunized mice do not produce higher levels of IFN-γ than do naive mice. The structural and immunological characteristics of JupMUT are substantially different from those of many other neoepitopes that have been shown to mediate tumor control.

2.
J Clin Invest ; 132(10)2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35298438

RESUMO

A disequilibrium between immunosuppressive Tregs and inflammatory IL-17-producing Th17 cells is a hallmark of autoimmune diseases, including multiple sclerosis (MS). However, the molecular mechanisms underlying the Treg and Th17 imbalance in CNS autoimmunity remain largely unclear. Identifying the factors that drive this imbalance is of high clinical interest. Here, we report a major disease-promoting role for microRNA-92a (miR-92a) in CNS autoimmunity. miR-92a was elevated in experimental autoimmune encephalomyelitis (EAE), and its loss attenuated EAE. Mechanistically, miR-92a mediated EAE susceptibility in a T cell-intrinsic manner by restricting Treg induction and suppressive capacity, while supporting Th17 responses, by directly repressing the transcription factor Foxo1. Although miR-92a did not directly alter Th1 differentiation, it appeared to indirectly promote Th1 cells by inhibiting Treg responses. Correspondingly, miR-92a inhibitor therapy ameliorated EAE by concomitantly boosting Treg responses and dampening inflammatory T cell responses. Analogous to our findings in mice, miR-92a was elevated in CD4+ T cells from patients with MS, and miR-92a silencing in patients' T cells promoted Treg development but limited Th17 differentiation. Together, our results demonstrate that miR-92a drives CNS autoimmunity by sustaining the Treg/Th17 imbalance and implicate miR-92a as a potential therapeutic target for MS.


Assuntos
Encefalomielite Autoimune Experimental , MicroRNAs , Esclerose Múltipla , Linfócitos T Reguladores , Animais , Autoimunidade , Diferenciação Celular , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Esclerose Múltipla/genética , Esclerose Múltipla/imunologia , Células Th1 , Células Th17
3.
Biosens Bioelectron ; 190: 113403, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34130086

RESUMO

Acute lymphoblastic leukemia (ALL) is one of the most common malignancies that account for nearly one-third of all pediatric cancers. The current diagnostic assays are time-consuming, labor-intensive, and require expensive reagents. Here, we report a label-free approach featuring diffraction phase imaging and Raman microscopy that can retrieve both morphological and molecular attributes for label-free optical phenotyping of individual B cells. By investigating leukemia cell lines of early and late stages along with the healthy B cells, we show that phase images can capture subtle morphological differences among the healthy, early, and late stages of leukemic cells. By exploiting its biomolecular specificity, we demonstrate that Raman microscopy is capable of accurately identifying not only different stages of leukemia cells but also individual cell lines at each stage. Overall, our study provides a rationale for employing this hybrid modality to screen leukemia cells using the widefield QPI and using Raman microscopy for accurate differentiation of early and late-stage phenotypes. This contrast-free and rapid diagnostic tool exhibits great promise for clinical diagnosis and staging of leukemia in the near future.


Assuntos
Técnicas Biossensoriais , Leucemia-Linfoma Linfoblástico de Células Precursoras , Linfócitos B , Linhagem Celular , Criança , Humanos , Microscopia
4.
Semin Immunol ; 47: 101387, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31952902

RESUMO

Tumors are immunogenic and the non-synonymous point mutations harbored by tumors are a source of their immunogenicity. Immunologists have long been enamored by the idea of synthetic peptides corresponding to mutated epitopes (neoepitopes) as specific "vaccines" against tumors presenting those neoepitopes in context of MHC I. Tumors may harbor hundreds of point mutations and it would require effective prediction algorithms to identify candidate neoepitopes capable of eliciting potent tumor-specific CD8+ T cell responses. Our current understanding of MHC I-restricted epitopes come from the observance of CD8+ T cell responses against viral (vaccinia, lymphocytic choriomeningitis etc.) and model (chicken ovalbumin, hen egg lysozyme etc.) antigens. Measurable CD8+ T cell responses elicited by model or viral antigens are always directed against epitopes possessing strong binding affinity for the restricting MHC I alleles. Immense collective effort to develop methodologies combining genomic sequencing, bioinformatics and traditional immunological techniques to identify neoepitopes with strong binding affinity to MHC I has only yielded inaccurate prediction algorithms. Additionally, new evidence has emerged suggesting that neoepitopes, which unlike the epitopes of viral or model antigens have closely resembling wild-type counterparts, may not necessarily demonstrate strong affinity to MHC I. Our bearing need recalibration.


Assuntos
Antígenos de Neoplasias/imunologia , Epitopos/imunologia , Neoplasias/imunologia , Animais , Biomarcadores Tumorais , Vacinas Anticâncer/imunologia , Mapeamento de Epitopos , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Imunomodulação , Mutação , Neoplasias/genética , Neoplasias/terapia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA