Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Poult Sci ; 103(2): 103323, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38103530

RESUMO

The current study aimed to determine the effects of different levels of fermented Juncao grass (FG) on growth parameters, blood constituents, immunity, and antioxidative properties of broilers. A total of 240 (21-d-old) broiler chicks were randomly distributed to four dietary treatments of sixty birds, with six replicate pens and ten birds in each. Fermented grass was added to the basal diet at four levels with 0, 5, 10, and 15% FG. The results revealed that broilers fed 5% FG had significantly higher (P < 0.05) final body weight (FBW), average daily gain (WG) and average daily feed intake (ADFI). The best conversion ratio (FCR) was recorded for broilers supplemented with 5% FG compared to the group supplemented with 15% FG (P < 0.05). Increasing FG % decreased (P < 0.05) anti-inflammatory cytokines IL-4, IL-6, and IL-10. However, FG increased (P < 0.05) proinflammatory cytokines IFN-γ, IL-1, IL-2, IL-12, and TNF-α (P < 0.05). Moreover, IgA, IgG, and IgM levels increased (P < 0.05) with increasing FG %. In addition, increasing FG % in broiler rations significantly increased (P < 0.05) serum antioxidant levels of T-AOC, GSH-PX, SOD, CAT, NO and GSH, but decreased (P < 0.05) MDA levels compared to the control group. Conclusively, fermented Juncao grass would be considered a novel herbal feed additive for improving broiler performance, immunity, antioxidant, and health status. Nevertheless, further research at the molecular level is needed to quantify the effects of these herbal components on cellular and humoral immune functions in broiler chickens.


Assuntos
Antioxidantes , Galinhas , Animais , Galinhas/fisiologia , Suplementos Nutricionais , Dieta/veterinária , Citocinas , Imunidade , Ração Animal/análise
2.
Plant Cell Environ ; 45(10): 2861-2874, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35822342

RESUMO

Drought and nutrient limitations adversely affect crop yields, with below-ground traits enhancing crop production in these resource-poor environments. This review explores the interacting biological, chemical and physical factors that determine rhizosheath (soil adhering to the root system) development, and its influence on plant water uptake and phosphorus acquisition in dry soils. Identification of quantitative trait loci for rhizosheath development indicate it is genetically determined, but the microbial community also directly (polysaccharide exudation) and indirectly (altered root hair development) affect its extent. Plants with longer and denser root hairs had greater rhizosheath development and increased P uptake efficiency. Moreover, enhanced rhizosheath formation maintains contact at the root-soil interface thereby assisting water uptake from drying soil, consequently improving plant survival in droughted environments. Nevertheless, it can be difficult to determine if rhizosheath development is a cause or consequence of improved plant adaptation to dry and nutrient-depleted soils. Does rhizosheath development directly enhance plant water and phosphorus use, or do other tolerance mechanisms allow plants to invest more resources in rhizosheath development? Much more work is required on the interacting genetic, physical, biochemical and microbial mechanisms that determine rhizosheath development, to demonstrate that selection for rhizosheath development is a viable crop improvement strategy.


Assuntos
Fósforo , Água , Fenótipo , Raízes de Plantas , Solo
3.
Environ Sci Pollut Res Int ; 29(25): 38435-38449, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35079973

RESUMO

This study aimed to identify the specific genes associated with plant growth promotion and cadmium tolerance in three bacteria strains associated with Pennisetum giganteum as well as to determine their biosafety levels in their potential use as biofertilizers for promoting plant growth and phytoremediation activities. The plant growth-promoting (PGP) abilities of Enterobacter cloacae strain RCB980 (A3), Klebsiella pneumonia strain kpa (A4), and Klebsiella sp. strain XT-2 (A7) were determined by a growth promotion trial and through testing for PGP traits such as 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase enzyme production, phosphorus solubilization, siderophore synthesis, and indole-3 acetic acid (IAA) production. The genes that potentially contribute to the beneficial activities of these three strains were identified through an analysis of their genomes. To establish the biosafety of the candidate PGPB, a pathological study was undertaken whereby 20 Kunming mice were injected intraperitoneally to study and analyze the effects of the strains on growth and lung paraffin sections of the mice. The strains had no obvious toxicity effect on the tested mice and were therefore not considered as highly virulent strains. These strains are thus considered non-toxic, safe, and highly recommended for use in environmental remediation strategies and agricultural production.


Assuntos
Pennisetum , Microbiologia do Solo , Animais , Bactérias/metabolismo , Contenção de Riscos Biológicos , Camundongos , Desenvolvimento Vegetal , Raízes de Plantas , Rizosfera
4.
Front Plant Sci ; 12: 658787, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421937

RESUMO

The rhizosheath, commonly defined as soil adhering to the root surface, may confer drought tolerance in various crop species by enhancing access to water and nutrients under drying stress conditions. Since the role of phytohormones in establishing this trait remains largely unexplored, we investigated the role of ABA in rhizosheath formation of wild-type (WT) and ABA-deficient (notabilis, not) tomatoes. Both genotypes had similar rhizosheath weight, root length, and root ABA concentration in well-watered soil. Drying stress treatment decreased root length similarly in both genotypes, but substantially increased root ABA concentration and rhizosheath weight of WT plants, indicating an important role for ABA in rhizosheath formation. Neither genotype nor drying stress treatment affected root hair length, but drying stress treatment decreased root hair density of not. Under drying stress conditions, root hair length was positively correlated with rhizosheath weight in both genotypes, while root hair density was positively correlated with rhizosheath weight in well-watered not plants. Root transcriptome analysis revealed that drought stress increased the expression of ABA-responsive transcription factors, such as AP2-like ER TF, alongside other drought-regulatory genes associated with ABA (ABA 8'-hydroxylase and protein phosphatase 2C). Thus, root ABA status modulated the expression of specific gene expression pathways. Taken together, drought-induced rhizosheath enhancement was ABA-dependent, but independent of root hair length.

5.
Plant Physiol Biochem ; 166: 531-539, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34174658

RESUMO

Phosphorus (P) deficiency largely restricts plant growth and lead to severe yield losses. Therefore, identification of novel root traits to improve P uptake is needed to circumvent yield losses. White lupin (Lupinus albus) is a legume crop that develops cluster roots and has the high phosphorus use efficiency in low P soils. We aimed to investigate the association between cluster roots (CR) rhizosheath formation and P uptake in white lupin. Rhizosheath formation and P concentration were evaluated under four soil treatments. CR increased up to 2.5-fold of overall plant dry weight under SD-P compared to WW + P (control), partly attributable to variations in CR development. Our data showed that SD-P significantly increase rhizosheath weight in white lupin. Among the root segments, MCR showed improved P accumulation in the root which is associated with increased MCR rhizosheath weight. Additionally, a positive correlation was observed between MCR rhizosheath weight and P uptake. Moreover, high sucrose content was recorded in MCR, which may contribute in CR growth under SD-P. Expression analysis of genes related to sucrose accumulation (LaSUC1, LaSUC5, and LaSUC9) and phosphorus uptake (LaSPX3, LaPHO1, and LaPHT1) exhibited peaked expression in MCR under SD-P. This indicate that root sucrose status may facilitate P uptake under P starvation. Together, the ability to enhance P uptake of white lupin is largely associated with MCR rhizosheath under SD-P. Our results showed that gene expression modulation of CR forming plant species, demonstrating that these novel root structures may play crucial role in P acquisition from the soil. Our findings could be implicated for developing P and water efficient crop via CR development in sustainable agriculture.


Assuntos
Lupinus , Transporte Biológico , Lupinus/genética , Fósforo , Raízes de Plantas , Solo
6.
Microb Pathog ; 147: 104410, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32707312

RESUMO

White-rot basidiomycetic fungi have gained a lot of scientific attention in recent years owing to their ability to produce cellulase enzymes that are of great importance in numerous industrial applications. This has seen a rise in number of studies seeking to comprehend both physical and molecular mechanisms that regulate the production of cellulase enzymes in these fungi. Cellulase has several applications in production of food and beverages, biofuel, biological detergents, pharmaceuticals, and deinking in paper and pulp industry. Enhanced understanding of genetic mechanisms that regulate cellulase production would have utility for optimal cellulase production in white-rot basidiomycetes using biotechnology approaches. Carbon catabolite repression and various transcriptional factors such as XlnR, Cre, Clr, Ace, and gna1 control expression of genes encoding cellobiohydrolase (CBH), endoglucanase (EGL) and ß-glucosidase (BGL). In this review, we have consolidated and summarised some of recent findings on genetic regulation of cellulase with an aim of highlighting the general regulatory mechanisms that underlie cellulase expressions in white-rot fungi. This review further outlines some of important transcription factors that regulate cellulase genes, and key research gaps that may need to be addressed by future research.


Assuntos
Basidiomycota , Repressão Catabólica , Celulase , Basidiomycota/metabolismo , Biotecnologia , Celulase/metabolismo , beta-Glucosidase/metabolismo
7.
Plants (Basel) ; 9(3)2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32138269

RESUMO

The tissue culture regeneration system of Lupinus albus has always been considered as recalcitrant material due to its genotype-dependent response and low regeneration efficiency that hamper the use of genetic engineering. Establishment of repeatable plant regeneration protocol is a prerequisite tool for successful application of genetic engineering. This aim of this study was to develop standardized, efficient protocol for successful shoot induction from cotyledonary node of white lupin. In this study, 5 day old aseptically cultured seedlings were used to prepare three explants (half cotyledonary node, HCN; whole cotyledonary node, WCN; and traditional cotyledonary node, TCN), cultured on four concentrations of M519 medium (M519, ½ M519, 1/3 M519, and » M519), containing four carbohydrate sources (sucrose, fructose, maltose, and glucose), and stimulated with various combinations of KT (kinetin), and NAA (naphthalene acetic acid) for direct shoot regeneration. High frequency of 80% shoot regeneration was obtained on ½ M519 medium (KT 4.0 mg L-1 + NAA 0.1 mg L-1) by using HCN as an explant. Interestingly, combinations of (KT 4.0 mg L-1 + NAA 0.1 mg L-1 + BAP 1.67 mg L-1), and (KT 2.0 mg L-1 + NAA 0.1 mg L-1) showed similar shoot regeneration frequency of 60%. Augmentation of 0.25 g L-1 activated charcoal (AC) not only reduced browning effect but also improved shoot elongation. Among the all carbohydrate sources, sucrose showed the highest regeneration frequency with HCN. Additionally, 80% rooting frequency was recorded on ½ M519 containing IAA 1.0 mg L-1 + KT 0.1 mg L-1 (indole acetic acid) after 28 days of culturing. The present study describes establishment of an efficient and successful protocol for direct plant regeneration of white lupin from different cotyledonary nodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA