Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(10): 2972-2979, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38416567

RESUMO

The recent discovery of polar topological structures has opened the door for exciting physics and emergent properties. There is, however, little methodology to engineer stability and ordering in these systems, properties of interest for engineering emergent functionalities. Notably, when the surface area is extended to arbitrary thicknesses, the topological polar texture becomes unstable. Here we show that this instability of the phase is due to electrical coupling between successive layers. We demonstrate that this electrical coupling is indicative of an effective screening length in the dielectric, similar to the conductor-ferroelectric interface. Controlling the electrostatics of the superlattice interfaces, the system can be tuned between a pure topological vortex state and a mixed classical-topological phase. This coupling also enables engineering coherency among the vortices, not only tuning the bulk phase diagram but also enabling the emergence of a 3D lattice of polar textures.

2.
Nano Lett ; 23(24): 11409-11415, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38095312

RESUMO

A prominent characteristic of 2D magnetic systems is the enhanced spin fluctuations, which reduce the ordering temperature. We report that a magnetic field of only 1000th of the Heisenberg superexchange interaction can induce a crossover, which for practical purposes is the effective ordering transition, at temperatures about 6 times the Néel transition in a site-diluted two-dimensional anisotropic quantum antiferromagnet. Such a strong magnetic response is enabled because the system directly enters the antiferromagnetically ordered state from the isotropic disordered state, skipping the intermediate anisotropic stage. The underlying mechanism is achieved on a pseudospin-half square lattice realized in the [(SrIrO3)1/(SrTiO3)2] superlattice thin film that is designed to linearly couple the staggered magnetization to external magnetic fields by virtue of the rotational symmetry-preserving Dzyaloshinskii-Moriya interaction. Our model analysis shows that the skipping of the anisotropic regime despite finite anisotropy is due to the enhanced isotropic fluctuations under moderate dilution.

3.
ACS Appl Mater Interfaces ; 15(50): 59055-59065, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38055639

RESUMO

Chemical vapor deposition (CVD) offers a large-area, scalable, and conformal growth of perovskite thin films without the use of solvents. Low-dimensional organic-inorganic halide perovskites, with alternating layers of organic spacer groups and inorganic perovskite layers, are promising for enhancing the stability of optoelectronic devices. Moreover, their multiple quantum-well structures provide a powerful platform for tuning excitonic physics. In this work, we show that the CVD process is conducive to the growth of 2D hybrid halide perovskite films. Using butylammonium (BA) and phenylethylammonium (PEA) cations, the growth parameters of BA2PbI4 and PEA2PbI4 and mixed halide perovskite films were first optimized. These films are characterized by well-defined grain boundaries and display characteristic absorption and emission features of the 2D quantum wells. X-ray diffraction (XRD) and a noninteger dimensionality model of the absorption spectrum provide insights into the orientation of the crystalline planes. Unlike BA2PbI4, temperature-dependent photoluminescence measurements from PEA2PbI4 show a single excitonic peak throughout the temperature range from 20 to 350 K, highlighting the lack of defect states. These results further corroborate the temperature-dependent synchrotron-based XRD results. Furthermore, the nonlinear optical properties of the CVD-grown perovskite films are investigated, and a high third harmonic generation efficiency is observed.

4.
Nanomaterials (Basel) ; 13(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36677981

RESUMO

The synthesis of bimetallic iron-nickel nanoparticles with control over the synthesized phases, particle size, surface chemistry, and oxidation level remains a challenge that limits the application of these nanoparticles. Pulsed laser ablation in liquid allows the properties tuning of the generated nanoparticles by changing the ablation solvent. Organic solvents such as acetone can minimize nanoparticle oxidation. Yet, economical laboratory and technical grade solvents that allow cost-effective production of FeNi nanoparticles contain water impurities, which are a potential source of oxidation. Here, we investigated the influence of water impurities in acetone on the properties of FeNi nanoparticles generated by pulsed laser ablation in liquids. To remove water impurities and produce "dried acetone", cost-effective and reusable molecular sieves (3 Å) are employed. The results show that the Fe50Ni50 nanoparticles' properties are influenced by the water content of the solvent. The metastable HCP FeNi phase is found in NPs prepared in acetone, while only the FCC phase is observed in NPs formed in water. Mössbauer spectroscopy revealed that the FeNi nanoparticles oxidation in dried acetone is reduced by 8% compared to acetone. The high-field magnetization of Fe50Ni50 nanoparticles in water is the highest, 68 Am2/kg, followed by the nanoparticles obtained after ablation in acetone without water impurities, 59 Am2/kg, and acetone, 52 Am2/kg. The core-shell structures formed in these three liquids are also distinctive, demonstrating that a core-shell structure with an outer oxide layer is formed in water, while carbon external layers are obtained in acetone without water impurity. The results confirm that the size, structure, phase, and oxidation of FeNi nanoparticles produced by pulsed laser ablation in liquids can be modified by changing the solvent or just reducing the water impurities in the organic solvent.

5.
Phys Rev Lett ; 129(18): 187201, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36374692

RESUMO

The number of atomic layers confined in a two-dimensional structure is crucial for the electronic and magnetic properties. Single-layer and bilayer J_{eff}=1/2 square lattices are well-known examples where the presence of the extra layer turns the XY anisotropy to the c-axis anisotropy. We report on experimental realization of a hybrid SrIrO_{3}/SrTiO_{3} superlattice that integrates monolayer and bilayer square lattices in one layered structure. By synchrotron x-ray diffraction, resonant x-ray magnetic scattering, magnetization, and resistivity measurements, we found that the hybrid superlattice exhibits properties that are distinct from both the single-layer and bilayer systems and cannot be explained by a simple addition of them. In particular, the entire hybrid superlattice orders simultaneously through a single antiferromagnetic transition at temperatures similar to the bilayer system but with all the J_{eff}=1/2 moments mainly pointing in the ab plane similar to the single-layer system. The results show that bringing monolayer and bilayer with orthogonal properties in proximity to each other in a hybrid superlattice structure is a powerful way to stabilize a unique state not obtainable in a uniform structure.

6.
Phys Rev Lett ; 127(27): 277204, 2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35061435

RESUMO

The interplay between electronic interactions and strong spin-orbit coupling is expected to create a plethora of fascinating correlated topological states of quantum matter. Of particular interest are magnetic Weyl semimetals originally proposed in the pyrochlore iridates, which are only expected to reveal their topological nature in thin film form. To date, however, direct experimental demonstrations of these exotic phases remain elusive, due to the lack of usable single crystals and the insufficient quality of available films. Here, we report on the discovery of signatures for the long-sought magnetic Weyl semimetallic phase in (111)-oriented Eu_{2}Ir_{2}O_{7} high-quality epitaxial thin films. We observed an intrinsic anomalous Hall effect with colossal coercivity but vanishing net magnetization, which emerges right below the onset of a peculiar magnetic phase with all-in-all-out (AIAO) antiferromagnetic ordering. The anomalous Hall conductivity obtained experimentally is consistent with the theoretical prediction, likely arising from the nonzero Berry curvature emanated by Weyl node pairs near the Fermi level that act as sources and sinks of Berry flux, activated by broken cubic crystal symmetry at the top and bottom terminations of the thin film.

7.
Nano Lett ; 20(11): 8008-8014, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33095023

RESUMO

We explore the effect of charge density wave (CDW) on the in-plane thermoelectric transport properties of (PbSe)1+δ(VSe2)1 and (PbSe)1+δ(VSe2)2 heterostructures. In (PbSe)1+δ(VSe2)1 we observe an abrupt 86% increase in the Seebeck coefficient, 245% increase in the power factor, and a slight decrease in resistivity over the CDW transition. This behavior is not observed in (PbSe)1+δ(VSe2)2 and is rather unusual compared to the general trend observed in other materials. The abrupt transition causes a deviation from the Mott relationship through correlated electron states. Raman spectra of the (PbSe)1+δ(VSe2)1 material show the emergence of additional peaks below the CDW transition temperature associated with VSe2 material. Temperature-dependent in-plane X-ray diffraction (XRD) spectra show a change in the in-plane thermal expansion of VSe2 in (PbSe)1+δ(VSe2)1 due to lattice distortion. The increase in the power factor and decrease in the resistivity due to CDW suggest a potential mechanism for enhancing the thermoelectric performance at the low temperature region.

8.
Phys Chem Chem Phys ; 22(34): 19089-19099, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32807995

RESUMO

The electron density profile of bilayers of DPPC/cholesterol mixtures supported on semiconductor grade silicon substrates were studied with the objective of determining how the proximity of a solid interface modifies the phase diagram of mixed bilayers. The bilayers were studied in situ immersed in water via synchrotron X-ray reflectivity (XRR). Measurements were performed as a function of temperature through the main phase transition and cholesterol mole fractions up to 40%. Analysis of XRR yields the bilayer thickness, roughness and leaflet asymmetry. We find that the structure of the pure DPPC bilayers in the gel phase is in agreement with previous X-ray measurements of supported bilayers deposited via vesicle fusion and multilamellar vesicles but show more clearly defined features than measurements made on films formed using Langmuir-Blodget Langmuir-Shaffer (LB) deposition. Examination of bilayer thickness vs. temperature shows that the melting temperature for supported bilayers is shifted upwards by approximately 4 °C relative to multilamellar vesicles and that the melting temperature decreases with increasing cholesterol content up to 20%. For pure DPPC bilayers the leaflets melt in two stages with the distal leaflet melting first. For cholesterol concentrations of 10% and 20% there is no clear indication of separate melting. For 33% and 40% cholesterol content no clear transition is seen in the bilayer thickness, but an abrupt change in roughness indicates possible microdomain formation in the 40% cholesterol sample.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Colesterol/química , Bicamadas Lipídicas/química , Estrutura Molecular , Síncrotrons , Temperatura de Transição , Água/química , Raios X
10.
Nature ; 580(7804): 478-482, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32322080

RESUMO

Ultrathin ferroelectric materials could potentially enable low-power perovskite ferroelectric tetragonality logic and nonvolatile memories1,2. As ferroelectric materials are made thinner, however, the ferroelectricity is usually suppressed. Size effects in ferroelectrics have been thoroughly investigated in perovskite oxides-the archetypal ferroelectric system3. Perovskites, however, have so far proved unsuitable for thickness scaling and integration with modern semiconductor processes4. Here we report ferroelectricity in ultrathin doped hafnium oxide (HfO2), a fluorite-structure oxide grown by atomic layer deposition on silicon. We demonstrate the persistence of inversion symmetry breaking and spontaneous, switchable polarization down to a thickness of one nanometre. Our results indicate not only the absence of a ferroelectric critical thickness but also enhanced polar distortions as film thickness is reduced, unlike in perovskite ferroelectrics. This approach to enhancing ferroelectricity in ultrathin layers could provide a route towards polarization-driven memories and ferroelectric-based advanced transistors. This work shifts the search for the fundamental limits of ferroelectricity to simpler transition-metal oxide systems-that is, from perovskite-derived complex oxides to fluorite-structure binary oxides-in which 'reverse' size effects counterintuitively stabilize polar symmetry in the ultrathin regime.

11.
Adv Mater ; 31(43): e1902364, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31515864

RESUMO

Interface-induced modifications of the electronic, magnetic, and lattice degrees of freedom drive an array of novel physical properties in oxide heterostructures. Here, large changes in metal-oxygen band hybridization, as measured in the oxygen ligand hole density, are induced as a result of interfacing two isovalent correlated oxides. Using resonant X-ray reflectivity, a superlattice of SrFeO3 and CaFeO3 is shown to exhibit an electronic character that spatially evolves from strongly O-like in SrFeO3 to strongly Fe-like in CaFeO3 . This alternating degree of Fe electronic character is correlated with a modulation of an Fe 3d orbital polarization, giving rise to an orbital superstructure. At the SrFeO3 /CaFeO3 interfaces, the ligand hole density and orbital polarization reconstruct in a single unit cell of CaFeO3 , demonstrating how the mismatch in these electronic parameters is accommodated at the interface. These results provide new insight into how the orbital character of electrons is altered by correlated oxide interfaces and lays out a broadly applicable approach for depth-resolving band hybridization.

12.
ACS Appl Mater Interfaces ; 11(3): 3555-3564, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30592199

RESUMO

A challenge of broad interest in both materials science and biology is the study of interfaces that are buried within a structure, particularly multilayer structures. Despite the enormous costs of corrosion and many decades of corrosion research, details of the mechanisms of various sorts of corrosion are still not clear, in part due to the difficulty in interrogating the interface between the corroding metal and an organic coating, which is typically used to mitigate corrosion. Generally, the performance of such coatings is evaluated by visual inspection after exposure or by modeling impedance data, which is a process not straightforwardly connected to physical interface structures. "Rocking-curve" X-ray scattering measurements provide a means of probing such interfaces due to the ability of X-rays to penetrate materials. Here, variations in the morphology of an interface between a protective coating and a metal substrate due to exposure to an electrolyte are derived from analysis of rocking-curve data in conjunction with atomic force microscopy imaging of the outer coating surface. The interfaces of cross-linked epoxy coatings with aluminum are irreversibly changed after 12 h of contact between the electrolyte solution and the face of the coating. The character of this change varies with the molecule used to cross-link the coating. Since X-ray off-specular scattering is sensitive to changes on the nanometer scale, it is also able to register interface degradation on time scales shorter than those probed by many other techniques, potentially expediting the evaluation of coatings for protection against degradation of the interface.

13.
Adv Mater ; 30(52): e1804775, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30370580

RESUMO

Control over the oxygen octahedral framework is widely recognized as key to the design of functional properties in perovskite oxide heterostructures. Although the oxygen octahedral framework can be manipulated during synthesis, the as-grown oxygen octahedra generally remain fixed, preventing the development of adaptive behavior in electronic and ionotronic systems. Here, it is demonstrated that the oxygen octahedral framework can be dynamically and reversibly manipulated by an electric field through the coupling with oxygen vacancies. Studying model WO3 heterostructures during ionic liquid gating with a combination of in situ X-ray scattering and spectroscopy, it is shown that large changes in electronic properties can arise due to the increased flexibility of the octahedral network at high vacancy concentrations. The results describe a generic framework for the construction of dynamic systems and devices with an array of field-tunable properties.

15.
Angew Chem Int Ed Engl ; 56(2): 535-539, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-27936290

RESUMO

Nanoscale crystal growth control is crucial for tailoring two-dimensional (2D) zeolites (crystallites with thickness less than two unit cells) and thicker zeolite nanosheets for applications in separation membranes and as hierarchical catalysts. However, methods to control zeolite crystal growth with nanometer precision are still in their infancy. Herein, we report solution-based growth conditions leading to anisotropic epitaxial growth of 2D zeolites with rates as low as few nanometers per day. Contributions from misoriented surface nucleation and rotational intergrowths are eliminated. Growth monitoring at the single-unit-cell level reveals novel nanoscale crystal-growth phenomena associated with the lateral size and surface curvature of 2D zeolites.

16.
Nano Lett ; 16(1): 534-42, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26652204

RESUMO

The field of oxide electronics has benefited from the wide spectrum of functionalities available to the ABO3 perovskites, and researchers are now employing defect engineering in single crystalline heterostructures to tailor properties. However, bulk oxide single crystals are not conducive to many types of applications, particularly those requiring mechanical flexibility. Here, we demonstrate the realization of an all-oxide, single-crystalline nanomembrane heterostructure. With a surface-to-volume ratio of 2 × 10(7), the nanomembranes are fully flexible and can be readily transferred to other materials for handling purposes or for new materials integration schemes. Using in situ synchrotron X-ray scattering, we find that the nanomembranes can bond to other host substrates near room temperature and demonstrate coupling between surface reactivity and electromechanical properties in ferroelectric nanomembrane systems. The synthesis technique described here represents a significant advancement in materials integration and provides a new platform for the development of flexible oxide electronics.

17.
Phys Chem Chem Phys ; 18(2): 1225-32, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26661405

RESUMO

Ternary lipid mixtures incorporating cholesterol are well-known to phase separate into liquid-ordered (L(o)) and liquid-disordered (L(d)) phases. In multilayers of these systems, the laterally phase separated domains register in columnar structures with different bilayer periodicities, resulting in hydrophobic mismatch energies at the domain boundaries. In this paper, we demonstrate via synchrotron-based X-ray diffraction measurements that the system relieves the hydrophobic mismatch at the domain boundaries by absorbing larger amounts of inter-bilayer water into the L(d) phase with lower d-spacing as the relative humidity approaches 100%. The lamellar repeat distance of the L(d) phase swells by an extra 4 Å, well beyond the equilibrium spacing predicted by the inter-bilayer forces. This anomalous swelling is caused by the hydrophobic mismatch energy at the domain boundaries, which produces a surprisingly long-range effect. We also demonstrate that the d-spacings of the lipid multilayers at 100% relative humidity do not change when bulk water begins to condense on the sample.


Assuntos
Colesterol/química , Umidade , Lipídeos/química , Água/química , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Propriedades de Superfície
18.
Phys Rev Lett ; 105(3): 037803, 2010 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-20867810

RESUMO

Is there a low-density region ("gap") between water and a hydrophobic surface? Previous x-ray and neutron reflectivity results have been inconsistent because the effect (if any) is subresolution for the surfaces studied. We have used x-ray reflectivity to probe the interface between water and more hydrophobic smooth surfaces. The depleted region width increases with contact angle and becomes larger than the resolution, allowing definitive measurements. Large fluctuations are predicted at this interface; however, we find that their contribution to the interface roughness is too small to measure.

19.
Phys Rev Lett ; 103(17): 175701, 2009 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-19905770

RESUMO

Pentaphenyl trimethyl trisiloxane is an isotropic liquid at room temperature with a dynamic glass transition at 224 K. Using x-ray reflectivity, we see surface density oscillations (layers) develop below 285 K, similar to those seen in other metallic and dielectric liquids and in computer simulations. The layering threshold is approximately 0.23 times the liquid-gas critical temperature. Upon cooling further, there is a sharp increase at 224 K in the persistence of the surface layers into the bulk material, i.e., an apparently discontinuous change in static structure at the glass transition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA