RESUMO
The gut microbiota is altered in epilepsy and is emerging as a potential target for new therapies. We studied the effects of rifaximin, a gastrointestinal tract-specific antibiotic, on seizures and neuropathology and on alterations in the gut and its microbiota in a mouse model of temporal lobe epilepsy (TLE). Epilepsy was induced by intra-amygdala kainate injection causing status epilepticus (SE) in C57Bl6 adult male mice. Sham mice were injected with vehicle. Two cohorts of SE mice were fed a rifaximin-supplemented diet for 21 days, starting either at 24 h post-SE (early disease stage) or at day 51 post-SE (chronic disease stage). Corresponding groups of SE mice (one each disease stage) were fed a standard (control) diet. Cortical ECoG recording was done at each disease stage (24/7) for 21 days in all SE mice to measure the number and duration of spontaneous seizures during either rifaximin treatment or control diet. Then, epileptic mice ± rifaximin and respective sham mice were sacrificed and brain, gut and feces collected. Biospecimens were used for: (i) quantitative histological analysis of the gut structural and cellular components; (ii) markers of gut inflammation and intestinal barrier integrity by RTqPCR; (iii) 16S rRNA metagenomics analysis in feces. Hippocampal neuronal cell loss was assessed in epileptic mice killed in the early disease phase. Rifaximin administered for 21 days post-SE (early disease stage) reduced seizure duration (p < 0.01) and prevented hilar mossy cells loss in the hippocampus compared to epileptic mice fed a control diet. Epileptic mice fed a control diet showed a reduction of both villus height and villus height/crypt depth ratio (p < 0.01) and a decreased number of goblet cells (p < 0.01) in the duodenum, as well as increased macrophage (Iba1)-immunostaining in the jejunum (p < 0.05), compared to respective sham mice. Rifaximin's effect on seizures was associated with a reversal of gut structural and cellular changes, except for goblet cells which remained reduced. Seizure duration in epileptic mice was negatively correlated with the number of mossy cells (p < 0.01) and with villus height/crypt depth ratio (p < 0.05). Rifaximin-treated epileptic mice also showed increased tight junctions (occludin and ZO-1, p < 0.01) and decreased TNF mRNA expression (p < 0.01) in the duodenum compared to epileptic mice fed a control diet. Rifaximin administered for 21 days in chronic epileptic mice (chronic disease stage) did not change the number or duration of seizures compared to epileptic mice fed a control diet. Chronic epileptic mice fed a control diet showed an increased crypt depth (p < 0.05) and reduced villus height/crypt depth ratio (p < 0.01) compared to respective sham mice. Rifaximin treatment did not affect these intestinal changes. At both disease stages, rifaximin modified α- and ß-diversity in epileptic and sham mice compared to respective mice fed a control diet. The microbiota composition in epileptic mice, as well as the effects of rifaximin at the phylum, family and genus levels, depended on the stage of the disease. During the early disease phase, the abundance of specific taxa was positively correlated with seizure duration in epileptic mice. In conclusion, gut-related alterations reflecting a dysfunctional state, occur during epilepsy development in a TLE mouse model. A short-term treatment with rifaximin during the early phase of the disease, reduced seizure duration and neuropathology, and reversed some intestinal changes, strengthening the therapeutic effects of gut-based therapies in epilepsy.
Assuntos
Modelos Animais de Doenças , Epilepsia do Lobo Temporal , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Rifaximina , Convulsões , Animais , Rifaximina/uso terapêutico , Rifaximina/farmacologia , Camundongos , Masculino , Microbioma Gastrointestinal/efeitos dos fármacos , Convulsões/tratamento farmacológico , Epilepsia do Lobo Temporal/tratamento farmacológico , Estado Epiléptico/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Epilepsia/tratamento farmacológicoRESUMO
BACKGROUND: Natural products present an environmentally attractive alternative to synthetic pesticides which have been implicated in the off-target effect. Currently, the assessment of pesticide toxicity on soil microorganisms relies on the OECD 216 N transformation assay (OECD stands for the Organisation Economic Co-operation and Development, which is a key international standard-setting organisation). We tested the hypotheses that (i) the OECD 216 assay fails to identify unacceptable effects of pesticides on soil microbiota compared to more advanced molecular and standardized tests, and (ii) the natural products tested (dihydrochalcone, isoflavone, aliphatic phenol, and spinosad) are less toxic to soil microbiota compared to a synthetic pesticide compound (3,5-dichloraniline). We determined the following in three different soils: (i) ammonium (NH4 +) and nitrate (NO3 -) soil concentrations, as dictated by the OECD 216 test, and (ii) the abundance of phylogenetically (bacteria and fungi) and functionally distinct microbial groups [ammonia-oxidizing archaea (AOA) and bacteria (AOB)] using quantitative polymerase chain reaction (q-PCR). RESULTS: All pesticides tested exhibited limited persistence, with spinosad demonstrating the highest persistence. None of the pesticides tested showed clear dose-dependent effects on NH4 + and NO3 - levels and the observed effects were <25% of the control, suggesting no unacceptable impacts on soil microorganisms. In contrast, q-PCR measurements revealed (i) distinct negative effects on the abundance of total bacteria and fungi, which were though limited to one of the studied soils, and (ii) a significant reduction in the abundance of both AOA and AOB across soils. This reduction was attributed to both natural products and 3,5-dichloraniline. CONCLUSION: Our findings strongly advocate for a revision of the current regulatory framework regarding the toxicity of pesticides to soil microbiota, which should integrate advanced and well-standardized tools. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Assuntos
Bactérias , Microbiota , Praguicidas , Microbiologia do Solo , Microbiota/efeitos dos fármacos , Praguicidas/toxicidade , Bactérias/efeitos dos fármacos , Bactérias/genética , Produtos Biológicos , Fungos/efeitos dos fármacos , Fungos/genética , Nitrogênio , Archaea/efeitos dos fármacos , Archaea/genética , Poluentes do Solo/toxicidade , Solo/químicaRESUMO
The application of manures leads to the contamination of agricultural soils with veterinary antibiotics (VAs). These might exert toxicity on the soil microbiota and threaten environmental quality, and public health. We obtained mechanistic insights about the impact of three VAs, namely, sulfamethoxazole (SMX), tiamulin (TIA) and tilmicosin (TLM), on the abundance of key soil microbial groups, antibiotic resistance genes (ARGs) and class I integron integrases (intl1). In a microcosm study, we repeatedly treated two soils (differing in pH and VA dissipation capacity) with the studied VAs, either directly or via fortified manure. This application scheme resulted in accelerated dissipation of TIA, but not of SMX, and accumulation of TLM. Potential nitrification rates (PNR), and the abundance of ammonia-oxidizing microorganism (AOM) were reduced by SMX and TIA, but not by TLM. VAs strongly impacted the total prokaryotic and AOM communities, whereas manure addition was the main determinant of the fungal and protist communities. SMX stimulated sulfonamide resistance, while manure stimulated ARGs and horizontal gene transfer. Correlations identified opportunistic pathogens like Clostridia, Burkholderia-Caballeronia-Paraburkholderia, and Nocardioides as potential ARG reservoirs in soil. Our results provide unprecedented evidence about the effects of understudied VAs on soil microbiota and highlight risks posed by VA-contaminated manures. ENVIRONMENTAL IMPLICATION: The dispersal of veterinary antibiotics (VAs) through soil manuring enhances antimicrobial resistance (AMR) development and poses a threat to the environment and the public health. We provide insights about the impact of selected VAs on their: (i) microbially-mediated dissipation in soil; (ii) ecotoxicity on the soil microbial communities; (iii) capacity to stimulate AMR. Our results (i) demonstrate the effects of VAs and their application-mode on the bacterial, fungal, and protistan communities, and on the soil ammonia oxidizers; (ii) describe natural attenuation processes against VA dispersal, (iii) depict potential soil microbial AMR reservoirs, essential for the development of risk assessment strategies.
Assuntos
Antibacterianos , Solo , Solo/química , Antibacterianos/farmacologia , Sulfametoxazol/química , Esterco/microbiologia , Microbiologia do Solo , Amônia/farmacologia , Genes Bacterianos , Farmacorresistência Bacteriana/genéticaRESUMO
Anthelmintics (AHs) control animal infections with gastrointestinal nematodes. They reach soil through animal faeces deposited on soils or through manuring. Although soil constitutes a major AH sink, we know little about the mechanisms controlling their soil dissipation. We employed studies with fumigated and non-fumigated soils collected from 12 sheep farms with a variable record of albendazole (ABZ), ivermectin (IVM) and eprinomectin (EPM) use. From each farm, we collected soils from inside small ruminant barn facilities (series A, high exposure) and the associated grazing pastures (series B, low exposure). We asked the following questions: (a) What is the role of soil microorganisms in AH dissipation? (b) Does repeated exposure of soils to AHs lead to their accelerated biodegradation? (c) Which soil physicochemical properties control AH dissipation? Soil fumigation significantly retarded ABZ (DT50 1.9 and 4.33 days), IVM (34.5 and 108.7 days) and EPM dissipation (30 and 121 days) suggesting a key role of soil microorganisms in AH dissipation. No significant acceleration in AH dissipation was evident in soils from units with a record of the administration of AHs or in soil series A vs series B, suggesting that the level of prior exposure was not adequate to induce their enhanced biodegradation. Significant positive and negative correlations of soil total organic carbon (TOC) and ABZ and IVM dissipation, respectively, were observed. Soil adsorption of AHs increased in the order IVM > ABZ > EPM. TOC controlled soil adsorption of IVM and EPM, but not of ABZ, in support of the contrasting effect of TOC on IVM and ABZ dissipation.
Assuntos
Anti-Helmínticos , Nematoides , Albendazol/farmacologia , Animais , Anti-Helmínticos/uso terapêutico , Biodegradação Ambiental , Ovinos , Solo/químicaRESUMO
Agro-food processing industries generate large amounts of pesticide-contaminated effluents that pose a significant environmental threat if managed improperly. Biopurification systems like biobeds could be utilized for the depuration of these effluents although direct evidence for their efficiency are still lacking. We employed a column leaching experiment with pilot biobeds to (i) assess the depuration potential of biobeds against fungicide-contaminated effluents from seed-producing (carboxin, metalaxyl-M, fluxapyroxad), bulb-handling (thiabendazole, fludioxonil and chlorothalonil) and fruit-packaging (fludioxonil, imazalil) industries, (ii) to monitor microbial succession via amplicon sequencing and (iii) to determine the presence and dynamics of mobile genetic elements like intl1, IS1071, IncP-1 and IncP-1ε often associated with the transposition of pesticide-degrading genes. Biobeds could effectively retain (adsorbed but extractable with organic solvents) and dissipate (degraded and/or not extractable with organic solvents) the fungicides that were contained in the agro-industrial effluents with 93.1-99.98% removal efficiency in all cases. Lipophilic substances like fluxapyroxad were mostly retained in the biobed while more polar substances like metalaxyl-M and carboxin were mostly dissipated or showed higher leaching potential like metalaxyl-M. Biobeds supported a bacterial and fungal community that was not affected by fungicide application but showed clear temporal patterns in the different biobed horizons. This was most probably driven by the establishment of microaerophilic conditions upon water saturation of biobeds, as supported by the significant increase in the abundance of facultative or strict anaerobes like Chloroflexi/Anaerolinae, Acidibacter and Myxococcota. Wastewater application did not affect the dynamics of mobile genetic elements in biobeds whose abundance (intl1, IS1071, IncP-1ε) showed significant increases with time. Our findings suggest that biobeds could effectively decontaminate fungicide-contaminated effluents produced by agro-food industries and support a rather resilient microbial community.
Assuntos
Fungicidas Industriais , Microbiota , Praguicidas , Biodegradação Ambiental , Indústria de Processamento de Alimentos , Sequências Repetitivas Dispersas , Praguicidas/análiseRESUMO
Phlebotomine sandflies are vectors of the humans' and mammals' parasite Leishmania spp. Although the role of gut microbiome in the biological cycle of insects is acknowledged, we still know little about the factors modulating the composition of the gut microbiota of sandflies. We tested whether host species impose a strong structural effect on the gut microbiota of Phlebotomus spp. Sandflies were collected from the island of Leros, Greece, and classified to P. papatasi, P. neglectus, P. tobbi, and P. similis, all being negative to Leishmania spp. The prokaryotic gut microbiota was determined via 16S rRNA gene amplicon sequencing. Phlebotomus species supported distinct microbial communities (p < 0.001). P. papatasi microbiota was the most distinct over-dominated by three Spiroplasma, Wolbachia and Paenibacillus operational taxonomic units (OTUs), while another Wolbachia OTU prevailed in P. neglectus. Conversely, the microbiota of P. tobbi and P. similis was composed of several less dominant OTUs. Archaea showed low presence with the dominant OTUs belonging to methanogenic Euryarcheota, ammonia-oxidizing Thaumarcheota, and Nanoarchaeota. We provide first insights into the composition of the bacterial and archaeal community of Phlebotomus sandflies and showed that, in the absence of Leishmania, host genotype is the major modulator of Phlebotomus sandfly gut microbiota.
RESUMO
Agro-food industries that use pesticides constitute significant point sources for the contamination of natural water resources. Despite that, little is known about the treatment of their pesticide-contaminated effluents. Biobeds could be a possible solution for the depuration of these effluents. In this context, we explored the degradation and adsorption of pesticides used in seed-coating (carboxin (CBX), metalaxyl-M (MET-M), fluxapyroxad (FLX), fludioxonil (FLD)), bulb-dipping (chlorothalonil (CHT), thiabendazole (TBZ), FLD) and fruit-packaging activities (FLD) in a biomixture, used as biobed packing material, and in soil. The degradation of pesticides was tested individually and in mixtures relevant to their industrial use, while FLD was also tested at different concentrations (10, 20, and 150â¯mgâ¯kg-1) representing its use in the different industries. CBX, FLD, and CHT, when applied individually, and all other pesticides when applied in mixtures, degraded more rapidly in biomixture than in soil. In most cases pesticides application in mixtures retarded their degradation. This was more pronounced in soil than in biomixture, especially for MET-M and FLD. CHT had the most prominent inhibitory effect on the degradation of TBZ and FLD. FLD degradation showed a dose-dependent pattern (DT50 42.4 days at 10â¯mgâ¯kg-1 and 107.6 days at 150â¯mgâ¯kg-1). All pesticides showed higher adsorption affinity in the biomixture (Kfâ¯=â¯3.23-123.3â¯gâ¯mL-1) compared to soil (Kfâ¯=â¯1.15-31.2â¯gâ¯mL-1). We provide initial evidence for the potential of the tested biomixture to remove pesticides contained in effluents produced by different agro-industrial activities. Tests in full-scale biobeds packed with this biomixture will unravel their full depuration potential for the treatment of these agro-industrial effluents.
Assuntos
Praguicidas , Adsorção , Biodegradação Ambiental , Frutas , SoloRESUMO
Pesticides are intentionally applied to agricultural fields for crop protection. They can harm non-target organisms such as soil microorganisms involved in important ecosystem functions with impacts at the global scale. Within the frame of the pesticide registration process, the ecotoxicological impact of pesticides on soil microorganisms is still based on carbon and nitrogen mineralization tests, despite the availability of more extensive approaches analyzing the abundance, activity or diversity of soil microorganisms. In this study, we used a high-density DNA microarray (PhyloChip) and 16S rDNA amplicon next-generation sequencing (NGS) to analyze the impact of the organophosphate insecticide chlorpyrifos (CHL), the phenyl-urea herbicide isoproturon (IPU), or the triazole fungicide tebuconazole (TCZ) on the diversity and composition of the soil bacterial community. To our knowledge, it is the first time that the combination of these approaches are applied to assess the impact of these three pesticides in a lab-to-field experimental design. The PhyloChip analysis revealed that although no significant changes in the composition of the bacterial community were observed in soil microcosms exposed to the pesticides, significant differences in detected operational taxonomic units (OTUs) were observed in the field experiment between pesticide treatments and control for all three tested pesticides after 70 days of exposure. NGS revealed that the bacterial diversity and composition varied over time. This trend was more marked in the microcosm than in the field study. Only slight but significant transient effects of CHL or TCZ were observed in the microcosm and the field study, respectively. IPU was not found to significantly modify the soil bacterial diversity or composition. Our results are in accordance with conclusions of the Environmental Food Safety Authority (EFSA), which concluded that these three pesticides may have a low risk toward soil microorganisms.
RESUMO
Tebuconazole (TBZ) is a widely used triazole fungicide at EU level on cereals and vines. It is relatively persistent in soil where it is transformed to various transformation products (TPs) which might be environmentally relevant. We assessed the dissipation of TBZ in soil under contrasting incubation conditions (standard vs winter simulated) that are relevant to its application scheme, determined its transformation pathway using advanced analytical tools and 14C-labeled TBZ and assessed its soil microbial toxicity. Mineralization of 14C-triazole-ring-labeled TBZ was negligible but up to 11% of 14C-penyl-ring-labeled TBZ evolved as 14CO2 within 150â¯days of incubation. TBZ persistence increased at higher dose rates (×10 compared to the recommended agronomical dose ×1) and under winter simulated conditions compared to standard incubation conditions (at ×1 dose rate DT50 of 202 and 88â¯days, respectively). Non-target suspect screening enabled the detection of 22 TPs of TBZ, among which 17 were unknown. Mass spectrometry analysis led to the identification of 1-(4-chlorophenyl) ethanone, a novel TP of TBZ, the formation of which and decay in soil was determined by gas chromatography mass spectrometry. Three hypothetical transformation pathways of TBZ, all converging to 1H-1,2,4-triazole are proposed based on suspect screening. The ecotoxicological effect of TBZ and of its TPs was assessed by measuring by qPCR the abundance of the total bacteria and the relative abundance of 11 prokaryotic taxa and 4 functional groups. A transient impact of TBZ on the relative abundance of all prokaryotic taxa (except α-proteobacteria and Bacteroidetes) and one functional microbial group (pcaH-carrying microorganisms) was observed. However the direction of the effect (positive or negative) varied, and in certain cases, depended on the incubation conditions. Proteobacteria was the most responsive phylum to TBZ with recovery observed 20â¯days after treatment. The ecotoxicological effects on the soil microorganisms were not correlated with 1-(4-chlorophenyl) ethanone.
Assuntos
Fungicidas Industriais/análise , Microbiologia do Solo , Poluentes do Solo/toxicidade , Triazóis/toxicidade , Estações do Ano , Solo , Poluentes do Solo/análise , Triazóis/análiseRESUMO
Synthetic carbamates constitute a significant pesticide group with oxamyl being a leading compound in the nematicide market. Oxamyl degradation in soil is mainly microbially mediated. However, the distribution and function of carbamate hydrolase genes (cehA, mcd, cahA) associated with the soil biodegradation of carbamates is not yet clear. We studied oxamyl degradation in 16 soils from a potato monoculture area in Greece where oxamyl is regularly used. Oxamyl showed low persistence (DT50 2.4-26.7 days). q-PCR detected the cehA and mcd genes in 10 and three soils, respectively. The abundance of the cehA gene was positively correlated with pH, while both cehA abundance and pH were negatively correlated with oxamyl DT50. Amongst the carbamates used in the study region, oxamyl stimulated the abundance and expression only of the cehA gene, while carbofuran stimulated the abundance and expression of both genes. The cehA gene was also detected in pristine soils upon repeated treatments with oxamyl and carbofuran and only in soils with pH ≥7.2, where the most rapid degradation of oxamyl was observed. These results have major implications regarding the maintenance of carbamate hydrolase genes in soils, have practical implications regarding the agricultural use of carbamates, and provide insights into the evolution of cehA.
Assuntos
Carbamatos/metabolismo , Hidrolases de Éster Carboxílico/genética , Praguicidas/metabolismo , Microbiologia do Solo , Solo/química , Solanum tuberosum , Bactérias/classificação , Bactérias/metabolismo , Biodegradação Ambiental , Carbofurano/metabolismo , Grécia , Concentração de Íons de HidrogênioRESUMO
Microbial degradation constitutes the key soil dissipation process for iprodione. We recently isolated a consortium, composed of an Arthrobacter sp. strain C1 and an Achromobacter sp. strain C2, that was able to convert iprodione to 3,5-dichloroaniline (3,5-DCA). However, the formation of metabolic intermediates and the role of the strains on iprodione metabolism remain unknown. We examined the degradation of iprodione and its suspected metabolic intermediates, 3,5-dichlorophenyl-carboxamide (metabolite I) and 3,5-dichlorophenylurea-acetate (metabolite II), by strains C1 and C2 and their combination under selective (MSM) and nutrient-rich conditions (LB). Bacterial growth during degradation of the tested compounds was determined by qPCR. Strain C1 rapidly degraded iprodione (DT50 = 2.3 h) and metabolite II (DT50 = 2.9 h) in MSM suggesting utilization of isopropylamine, transiently formed by hydrolysis of iprodione, and glycine liberated during hydrolysis of metabolite II, as C and N sources. In contrast, strain C1 degraded metabolite I only in LB and growth kinetics suggested the involvement of a detoxification process. Strain C2 was able to transform iprodione and its metabolites only in LB. Strain C1 degraded vinclozolin, a structural analog of iprodione, and partially propanil, but not procymidone and phenylureas indicating a structure-dependent specificity related to the substituents of the carboxamide moiety.
Assuntos
Aminoimidazol Carboxamida/análogos & derivados , Bactérias/metabolismo , Fungicidas Industriais/metabolismo , Hidantoínas/metabolismo , Microbiologia do Solo , Aminoimidazol Carboxamida/metabolismo , Compostos de Anilina/metabolismo , Biodegradação Ambiental , Redes e Vias Metabólicas , Oxazóis/metabolismo , Propanil/metabolismoRESUMO
Wastewaters from fruit-packaging plants contain high loads of toxic and persistent pesticides and should be treated on site. We evaluated the depuration performance of five pilot biobeds against those effluents. In addition we tested bioaugmentation with bacterial inocula as a strategy for optimization of their depuration capacity. Finally we determined the composition and functional dynamics of the microbial community via q-PCR. Practical issues were also addressed including the risk associated with the direct environmental disposal of biobed-treated effluents and decontamination methods for the spent packing material. Biobeds showed high depuration capacity (>99.5%) against all pesticides with bioaugmentation maximizing their depuration performance against the persistent fungicide thiabendazole (TBZ). This was followed by a significant increase in the abundance of bacteria, fungi and of catabolic genes of aromatic compounds catA and pcaH. Bioaugmentation was the most potent decontamination method for spent packing material with composting being an effective alternative. Risk assessment based on practical scenarios (pome and citrus fruit-packaging plants) and the depuration performance of the pilot biobeds showed that discharge of the treated effluents into an 0.1-ha disposal site did not entail an environmental risk, except for TBZ-containing effluents where a larger disposal area (0.2ha) or bioaugmentation alleviated the risk.
Assuntos
Resíduos Industriais , Consórcios Microbianos , Eliminação de Resíduos Líquidos/métodos , Reatores Biológicos , Embalagem de Alimentos , Projetos Piloto , Medição de RiscoRESUMO
Assessment of dissipation constitutes an integral part of pesticides risk assessment since it provides an estimate of the level and the duration of exposure of the terrestrial ecosystem to pesticides. Within the frame of an overall assessment of the soil microbial toxicity of pesticides, we investigated the dissipation of a range of dose rates of three model pesticides, isoproturon (IPU), tebuconazole (TCZ), and chlorpyrifos (CHL), and the formation and dissipation of their main transformation products following a tiered lab-to-field approach. The adsorption of pesticides and their transformation products was also determined. IPU was the least persistent pesticide showing a dose-dependent increase in its persistence in both laboratory and field studies. CHL dissipation showed a dose-dependent increase under laboratory conditions and an exact opposite trend in the field. TCZ was the most persistent pesticide under lab conditions showing a dose-dependent decrease in its dissipation, whereas in the field TCZ exhibited a biphasic dissipation pattern with extrapolated DT90s ranging from 198 to 603.4days in the ×1 and ×2 dose rates, respectively. IPU was demethylated to mono- (MD-IPU) and di-desmethyl-isoproturon (DD-IPU) which dissipated following a similar pattern with the parent compound. CHL was hydrolyzed to 3,5,6-trichloro-2-pyridinol (TCP) which dissipated showing a reverse dose-dependent pattern compared to CHL. Pesticides adsorption affinity increased in the order IPUAssuntos
Clorpirifos/metabolismo
, Fungicidas Industriais/metabolismo
, Herbicidas/metabolismo
, Inseticidas/metabolismo
, Compostos de Fenilureia/metabolismo
, Poluentes do Solo/metabolismo
, Triazóis/metabolismo
, Biodegradação Ambiental
, Monitoramento Ambiental
RESUMO
Citrus fruit-packaging plants (FPP) produce large wastewater volumes with high loads of fungicides like ortho-phenylphenol (OPP) and imazalil (IMZ). No methods are in place for the treatment of those effluents and biobeds appear as a viable alternative. We employed a column study to investigate the potential of spent mushroom substrate (SMS) of Pleurotus ostreatus, either alone or in mixture with straw and soil plus a mixture of straw /soil to retain and dissipate IMZ and OPP. The role of P. ostreatus on fungicides dissipation was also investigated by studying in parallel the performance of fresh mushroom substrate of P. ostreatus (FMS) and measuring lignolytic enzymatic activity in the leachates. All substrates effectively reduced the leaching of OPP and IMZ which corresponded to 0.014-1.1% and 0.120-0.420% of their initial amounts respectively. Mass balance analysis revealed that FMS and SMS/Straw/Soil (50/25/25 by vol) offered the most efficient removal of OPP and IMZ from wastewaters respectively. Regardless of the substrate, OPP was restricted in the top 0-20cm of the columns and was bioavailable (extractable with water), compared to IMZ which was less bioavailable (extractable with acetonitrile) but diffused at deeper layers (20-50, 50-80cm) in the SMS- and Straw/Soil-columns. PLFAs showed that fungal abundance was significantly lower in the top layer of all substrates from where the highest pesticide amounts were recovered suggesting an inhibitory effect of fungicides on total fungi in the substrates tested. Our data suggest that biobeds packed with SMS-rich substrates could ensure the efficient removal of IMZ and OPP from wastewaters of citrus FPP.
Assuntos
Fungicidas Industriais/isolamento & purificação , Imidazóis/isolamento & purificação , Pleurotus , Eliminação de Resíduos Líquidos/métodos , Agaricales , Citrus , Ácidos Graxos/análise , Frutas/química , Indústrias , Praguicidas , Solo , Triticum , Verduras , Águas ResiduáriasRESUMO
BACKGROUND: A limited number of pesticides are available for the control of soil pests in potato. This, together with the monoculture nature of potato cultivation, does not favour chemical rotation, increasing the risk of reduced biological efficacy due to microbial adaptation. The dissipation of three major organophosphates (chlorpyrifos, ethoprophos and fosthiazate) was studied in comparison with fipronil, an insecticide recently introduced in potato cultivation, in 17 soils from potato monoculture areas in Greece to explore the extent of enhanced biodegradation development. RESULTS: The dissipation time of the four pesticides varied in the different soils, with DT50 values of 1.7-30.8 days, 2.7-56 days, 7.0-31.0 days and 24.5-116.5 days for fosthiazate, chlorpyrifos, ethoprophos and fipronil, respectively. A rapid dissipation of ethoprophos and fosthiazate in two soils with previous exposure to these nematicides provided first evidence for the development of enhanced biodegradation. Sterilisation of the given soils inhibited the dissipation of fosthiazate. Additionally, fosthiazate dissipation in the soils increased upon repeated applications. CONCLUSION: The development of enhanced biodegradation of fosthiazate in soils from potato monoculture regions was verified. This is the first report of enhanced biodegradation for this chemical. Further studies will focus on the isolation of microorganisms responsible for the dissipation of fosthiazate.
Assuntos
Antinematódeos/metabolismo , Inseticidas/metabolismo , Microbiologia do Solo , Biodegradação Ambiental , Clorpirifos/metabolismo , Grécia , Compostos Organofosforados/metabolismo , Organotiofosfatos , Compostos Organotiofosforados/metabolismo , Pirazóis/metabolismo , Solanum tuberosum , Tiazolidinas/metabolismoRESUMO
Pesticides generate transformation products (TPs) when they are released into the environment. These TPs may be of ecotoxicological importance. Past studies have demonstrated how difficult it is to predict the occurrence of pesticide TPs and their environmental risk. The monitoring approaches mostly used in current regulatory frameworks target only known ecotoxicologically relevant TPs. Here, we present a novel combined approach which identifies and categorizes known and unknown pesticide TPs in soil by combining suspect screening time-of-flight mass spectrometry with in silico molecular typology. We used an empirical and theoretical pesticide TP library for compound identification by both non-target and target time-of-flight (tandem) mass spectrometry, followed by structural proposition through a molecular structure correlation program. In silico molecular typology was then used to group TPs according to common molecular descriptors and to indirectly elucidate their environmental parameters by analogy to known pesticide compounds with similar molecular descriptors. This approach was evaluated via the identification of TPs of the triazole fungicide tebuconazole occurring in soil during a field dissipation study. Overall, 22 empirical and 12 yet unknown TPs were detected, and categorized into three groups with defined environmental properties. This approach combining suspect screening time-of-flight mass spectrometry with molecular typology could be extended to other organic pollutants and used to rationalize the choice of TPs to be investigated towards a more comprehensive environmental risk assessment scheme.
Assuntos
Fungicidas Industriais/análise , Poluentes do Solo/análise , Triazóis/análise , Biotransformação , Monitoramento Ambiental , Fungicidas Industriais/metabolismo , Solo/química , Microbiologia do Solo , Poluentes do Solo/metabolismo , Espectrometria de Massas em Tandem , Triazóis/metabolismoRESUMO
Wastewaters from the fruit-packaging industry constitute a serious point source contamination with pesticides. In the absence of effective depuration methods, they are discharged in municipal wastewater treatment plants or spread to land. Modified biobeds could be an applicable solution for their treatment. We studied the dissipation of thiabendazole (TBZ), imazalil (IMZ), ortho-phenylphenol (OPP), diphenylamine (DPA) and ethoxyquin (EQ), used by the fruit-packaging industry, in anaerobically digested sewage sludge, liquid aerobic sewage sludge and in various organic substrates (biobeds packing materials) composed of soil, straw and spend mushroom substrate (SMS) in various volumetric ratios. Pesticide sorption was also determined. TBZ and IMZ showed higher persistence especially in the anaerobically digested sewage sludge (DT50=32.3-257.6d), in contrast to OPP and DPA which were rapidly dissipated especially in liquid aerobic sewage sludge (DT50=1.3-9.3d). EQ was rapidly oxidized mainly to quinone imine (QI) which did not persist and dimethyl ethoxyquinoline (EQNL, minor metabolite) which persisted for longer. Sterilization of liquid aerobic sewage sludge inhibited pesticide decay verifying the microbial nature of pesticide dissipation. Organic substrates rich in SMS showed the highest dissipation capacity with TBZ and IMZ DT50s of ca. 28 d compared to DT50s of >50 d in the other substrates. TBZ and IMZ showed the highest sorption affinity, whereas OPP and DPA were weakly sorbed. Our findings suggest that current disposal practices could not guarantee an efficient depuration of effluents from the fruit-packaging industry, whereas SMS-rich biobed organic substrates show efficient depuration of effluents from the fruit-packaging industry via accelerated dissipation even of recalcitrant fungicides.
Assuntos
Embalagem de Alimentos , Praguicidas/análise , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Praguicidas/metabolismo , Poluentes Químicos da Água/metabolismoRESUMO
Microbes inhabiting the phyllosphere of crops are exposed to pesticides applied either directly onto plant foliage or indirectly through soil. Although, phyllosphere microbiology has been rapidly evolving, little is still known regarding the impact of pesticides on the epiphytic microbial community and especially on fungi. We determined the impact of two systemic pesticides (metalaxyl and imidacloprid), applied either on foliage or through soil, on the epiphytic fungal and bacterial communities via DGGE and cloning. Both pesticides induced mild effects on the fungal and the bacterial communities. The only exception was the foliage application of imidacloprid which showed a more prominent effect on the fungal community. Cloning showed that the fungal community was dominated by putative plant pathogenic ascomycetes (Erysiphaceae and Cladosporium), while a few basidiomycetes were also present. The former ribotypes were not affected by pesticides application, while selected yeasts (Cryptococcus) were stimulated by the application of imidacloprid suggesting a potential role in its degradation. A less diverse bacterial community was identified in pepper plants. Metalaxyl stimulated an Enterobacteriaceae clone which is an indication of the involvement of members of this family in fungicide degradation. Further studies will focus on the isolation of epiphytic microbes which appear to be stimulated by pesticides application.
Assuntos
Ascomicetos/efeitos dos fármacos , Capsicum/microbiologia , Enterobacteriaceae/efeitos dos fármacos , Microbiologia do Solo , Alanina/análogos & derivados , Alanina/farmacologia , Ascomicetos/genética , Capsicum/efeitos dos fármacos , Enterobacteriaceae/genética , Fungos/efeitos dos fármacos , Fungos/genética , Imidazóis/farmacologia , Neonicotinoides , Nitrocompostos/farmacologia , Filogenia , RNA Ribossômico 16S/genéticaRESUMO
Two bacteria identified as Pseudomonas putida and Acinetobacter rhizosphaerae able to rapidly degrade the organophosphate (OP) fenamiphos (FEN) were isolated. Denaturating gradient gel electrophoresis analysis revealed that the two isolates were dominant members of the enrichment culture. Clone libraries further showed that bacteria belonging to α-, ß-, γ-proteobacteria and Bacteroidetes were also present in the final enrichment but were not isolated. Both strains hydrolyzed FEN to fenamiphos phenol which was further transformed, only by P. putida. The two strains were using FEN as C and N source. Cross-feeding studies with other pesticides showed that P. putida degraded OPs with a P-O-C linkage and unexpectedly degraded the carbamates oxamyl and carbofuran being the first wild-type bacterial strain able to degrade both OPs and carbamates. The same isolate exhibited high bioremediation potential against spillage-level concentrations of aged residues of FEN and its oxidized derivatives.