Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(7): e0305842, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39046940

RESUMO

BACKGROUND: As the global community begins recovering from the COVID-19 pandemic, the challenges due to its aftermath remain. This health crisis has highlighted challenges associated with airborne pathogens and their capacity for rapid transmission. While many solutions have emerged to tackle this challenge, very few devices exist that are inexpensive, easy to manufacture, and versatile enough for various settings. METHODS: This paper presents a novel suction device designed to counteract the spread of aerosols and droplets and be cost-effective and adaptable to diverse environments. We also conducted an experimental study to evaluate the device's effectiveness using an artificial cough generator, a particle counter, and a mannequin in an isolated system. We measured droplet removal rates with simulated single and repeated cough incidents. Also, measurements were taken at four distinct areas to compare its effectiveness on direct plume versus indirect particle removal. RESULTS: The device reduced airborne disease transmission risk, as evidenced by its capacity to decrease the half-life of aerosol volume from 23.6 minutes to 15.6 minutes, effectively capturing aerosol-sized droplets known for their extended airborne persistence. The suction device lessened the peak total droplet volume from peak counts. At 22 minutes post peak droplet count, the count had dropped 24% without the suction device and 43% with the suction device. CONCLUSIONS: The experiment's findings confirm the suction device's capability to effectively remove droplets from the environment, making it a vital tool in enhancing indoor air quality. Given the sustained performance of the suction device irrespective of single or multiple cough events, this demonstrates its potential utility in reducing the risk of airborne disease transmission. 3D printing for fabrication opens the possibility of a rapid iterative design process, flexibility for different configurations, and rapid global deployment for future pandemics.


Assuntos
Aerossóis , COVID-19 , Tosse , SARS-CoV-2 , Humanos , COVID-19/prevenção & controle , COVID-19/transmissão , Sucção/instrumentação , Manequins , Desenho de Equipamento , Pandemias/prevenção & controle , Aerossóis e Gotículas Respiratórios
2.
Indoor Built Environ ; 32(10): 1929-1948, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38023440

RESUMO

To understand the exact transmission routes of SARS-CoV-2 and to explore effects of time, space and indoor environment on the dynamics of droplets and aerosols, rigorous testing and observation must be conducted. In the current work, the spatial and temporal dispersions of aerosol droplets from a simulated cough were comprehensively examined over a long duration (70 min). An artificial cough generator was constructed to generate reliably repeatable respiratory ejecta. The measurements were performed at different locations in front (along the axial direction and off-axis) and behind the source in a sealed experimental enclosure. Aerosols of 0.3-10 µm (around 20% of the maximum nuclei count) were shown to persist for a very long time in a still environment, and this has a substantial implication for airborne disease transmission. The experiments demonstrated that a ventilation system could reduce the total aerosol volume and the droplet lifetime significantly. To explain the experimental observations in more detail and to understand the droplet in-air behaviour at various ambient temperatures and relative humidity, numerical simulations were performed using the Eulerian-Lagrangian approach. The simulations show that many of the small droplets remain suspended in the air over time instead of falling to the ground.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA