RESUMO
BACKGROUND: Aberrant alternative splicing can generate neoantigens, which can themselves stimulate immune responses and surveillance. Previous methods for quantifying splicing-derived neoantigens are limited by independent references and potential batch effects. RESULTS: Here, we introduce SpliceMutr, a bioinformatics approach and pipeline for identifying splicing derived neoantigens from tumor and normal data. SpliceMutr facilitates the identification of tumor-specific antigenic splice variants, predicts MHC-binding affinity, and estimates splicingâ¯antigenicity scores per gene. By applying this tool to genomic data from The Cancer Genome Atlas (TCGA), we generate splicing-derived neoantigens and neoantigenicity scores per sample and across all cancer types and find numerous correlations between splicing antigenicity and well-established biomarkers of anti-tumor immunity. Notably, carriers of mutations within splicing machinery genes have higher splicing antigenicity, which provides support for our approach. Further analysis of splicing antigenicity in cohorts of melanoma patients treated with mono- or combined immune checkpoint inhibition suggests that the abundance of splicing antigens is reduced post-treatment from baseline in patients who progress. We also observe increased splicing antigenicity in responders to immunotherapy, which may relate to an increased capacity to mount an immune response to splicing-derived antigens. CONCLUSIONS: We find the splicing antigenicity to be higher in tumor samples when compared to normal, that mutations in the splicing machinery result in increased splicing antigenicity in some cancers, and higher splicing antigenicity is associated with positive response to immune checkpoint inhibitor therapies. Further, this new computational pipeline provides novel analytical capabilities for splicing antigenicity and is openly available for further immuno-oncology analysis.
RESUMO
Summary: Neoplastic tumors originate from a single cell, and their evolution can be traced through lineages characterized by mutations, copy number alterations, and structural variants. These lineages are reconstructed and mapped onto evolutionary trees with algorithmic approaches. However, without ground truth benchmark sets, the validity of an algorithm remains uncertain, limiting potential clinical applicability. With a growing number of algorithms available, there is urgent need for standardized benchmark sets to evaluate their merits. Benchmark sets rely on in silico simulations of tumor sequence, but there are no accepted standards for simulation tools, presenting a major obstacle to progress in this field. Availability and implementation: All analysis done in the paper was based on publicly available data from the publication of each accessed tool.
Assuntos
Biologia Computacional , Biologia Computacional/métodos , Humanos , Variação Genética , SoftwareRESUMO
Pancreatic intraepithelial neoplasias (PanINs) are the most common precursors of pancreatic cancer, but their small size and inaccessibility in humans make them challenging to study1. Critically, the number, dimensions and connectivity of human PanINs remain largely unknown, precluding important insights into early cancer development. Here, we provide a microanatomical survey of human PanINs by analysing 46 large samples of grossly normal human pancreas with a machine-learning pipeline for quantitative 3D histological reconstruction at single-cell resolution. To elucidate genetic relationships between and within PanINs, we developed a workflow in which 3D modelling guides multi-region microdissection and targeted and whole-exome sequencing. From these samples, we calculated a mean burden of 13 PanINs per cm3 and extrapolated that the normal intact adult pancreas harbours hundreds of PanINs, almost all with oncogenic KRAS hotspot mutations. We found that most PanINs originate as independent clones with distinct somatic mutation profiles. Some spatially continuous PanINs were found to contain multiple KRAS mutations; computational and in situ analyses demonstrated that different KRAS mutations localize to distinct cell subpopulations within these neoplasms, indicating their polyclonal origins. The extensive multifocality and genetic heterogeneity of PanINs raises important questions about mechanisms that drive precancer initiation and confer differential progression risk in the human pancreas. This detailed 3D genomic mapping of molecular alterations in human PanINs provides an empirical foundation for early detection and rational interception of pancreatic cancer.
Assuntos
Heterogeneidade Genética , Genômica , Imageamento Tridimensional , Neoplasias Pancreáticas , Lesões Pré-Cancerosas , Análise de Célula Única , Adulto , Feminino , Humanos , Masculino , Células Clonais/metabolismo , Células Clonais/patologia , Sequenciamento do Exoma , Aprendizado de Máquina , Mutação , Pâncreas/anatomia & histologia , Pâncreas/citologia , Pâncreas/metabolismo , Pâncreas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/patologia , Fluxo de Trabalho , Progressão da Doença , Detecção Precoce de Câncer , Oncogenes/genéticaRESUMO
Introduction: Metastatic cancer affects millions of people worldwide annually and is the leading cause of cancer-related deaths. Most patients with metastatic disease are not eligible for surgical resection, and current therapeutic regimens have varying success rates, some with 5-year survival rates below 5%. Here we test the hypothesis that metastatic cancer can be genetically targeted by exploiting single base substitution mutations unique to individual cells that occur as part of normal aging prior to transformation. These mutations are targetable because ~10% of them form novel tumor-specific "NGG" protospacer adjacent motif (PAM) sites targetable by CRISPR-Cas9. Methods: Whole genome sequencing was performed on five rapid autopsy cases of patient-matched primary tumor, normal and metastatic tissue from pancreatic ductal adenocarcinoma decedents. CRISPR-Cas9 PAM targets were determined by bioinformatic tumor-normal subtraction for each patient and verified in metastatic samples by high-depth capture-based sequencing. Results: We found that 90% of PAM targets were maintained between primary carcinomas and metastases overall. We identified rules that predict PAM loss or retention, where PAMs located in heterozygous regions in the primary tumor can be lost in metastases (private LOH), but PAMs occurring in regions of loss of heterozygosity (LOH) in the primary tumor were universally conserved in metastases. Conclusions: Regions of truncal LOH are strongly retained in the presence of genetic instability, and therefore represent genetic vulnerabilities in pancreatic adenocarcinomas. A CRISPR-based gene therapy approach targeting these regions may be a novel way to genetically target metastatic cancer.
RESUMO
Missense de novo variants (DNVs) and missense somatic variants contribute to neurodevelopmental disorders (NDDs) and cancer, respectively. Proteins with statistical enrichment based on analyses of these variants exhibit convergence in the differing NDD and cancer phenotypes. Herein, the question of why some of the same proteins are identified in both phenotypes is examined through investigation of clustering of missense variation at the protein level. Our hypothesis is that missense variation is present in different protein locations in the two phenotypes leading to the distinct phenotypic outcomes. We tested this hypothesis in 1D protein space using our software CLUMP. Furthermore, we newly developed 3D-CLUMP that uses 3D protein structures to spatially test clustering of missense variation for proteome-wide significance. We examined missense DNVs in 39,883 parent-child sequenced trios with NDDs and missense somatic variants from 10,543 sequenced tumors covering five TCGA cancer types and two COSMIC pan-cancer aggregates of tissue types. There were 57 proteins with proteome-wide significant missense variation clustering in NDDs when compared to cancers and 79 proteins with proteome-wide significant missense clustering in cancers compared to NDDs. While our main objective was to identify differences in patterns of missense variation, we also identified a novel NDD protein BLTP2. Overall, our study is innovative, provides new insights into differential missense variation in NDDs and cancer at the protein-level, and contributes necessary information toward building a framework for thinking about prognostic and therapeutic aspects of these proteins.
RESUMO
Most neoplastic tumors originate from a single cell, and their evolution can be genetically traced through lineages characterized by common alterations such as small somatic mutations (SSMs), copy number alterations (CNAs), structural variants (SVs), and aneuploidies. Due to the complexity of these alterations in most tumors and the errors introduced by sequencing protocols and calling algorithms, tumor subclonal reconstruction algorithms are necessary to recapitulate the DNA sequence composition and tumor evolution in silico. With a growing number of these algorithms available, there is a pressing need for consistent and comprehensive benchmarking, which relies on realistic tumor sequencing generated by simulation tools. Here, we examine the current simulation methods, identifying their strengths and weaknesses, and provide recommendations for their improvement. Our review also explores potential new directions for research in this area. This work aims to serve as a resource for understanding and enhancing tumor genomic simulations, contributing to the advancement of the field.
RESUMO
Identifying neoepitopes that elicit an adaptive immune response is a major bottleneck to developing personalized cancer vaccines. Experimental validation of candidate neoepitopes is extremely resource intensive and the vast majority of candidates are non-immunogenic, creating a needle-in-a-haystack problem. Here we address this challenge, presenting computational methods for predicting class I major histocompatibility complex (MHC-I) epitopes and identifying immunogenic neoepitopes with improved precision. The BigMHC method comprises an ensemble of seven pan-allelic deep neural networks trained on peptide-MHC eluted ligand data from mass spectrometry assays and transfer learned on data from assays of antigen-specific immune response. Compared with four state-of-the-art classifiers, BigMHC significantly improves the prediction of epitope presentation on a test set of 45,409 MHC ligands among 900,592 random negatives (area under the receiver operating characteristic = 0.9733; area under the precision-recall curve = 0.8779). After transfer learning on immunogenicity data, BigMHC yields significantly higher precision than seven state-of-the-art models in identifying immunogenic neoepitopes, making BigMHC effective in clinical settings.
RESUMO
Introduction: We present here a strategy to identify immunogenic neoantigen candidates from unique amino acid sequences at the junctions of fusion proteins which can serve as targets in the development of tumor vaccines for the treatment of breastcancer. Method: We mined the sequence reads of breast tumor tissue that are usually discarded as discordant paired-end reads and discovered cancer specific fusion transcripts using tissue from cancer free controls as reference. Binding affinity predictions of novel peptide sequences crossing the fusion junction were analyzed by the MHC Class I binding predictor, MHCnuggets. CD8+ T cell responses against the 15 peptides were assessed through in vitro Enzyme Linked Immunospot (ELISpot). Results: We uncovered 20 novel fusion transcripts from 75 breast tumors of 3 subtypes: TNBC, HER2+, and HR+. Of these, the NSFP1-LRRC37A2 fusion transcript was selected for further study. The 3833 bp chimeric RNA predicted by the consensus fusion junction sequence is consistent with a read-through transcription of the 5'-gene NSFP1-Pseudo gene NSFP1 (NSFtruncation at exon 12/13) followed by trans-splicing to connect withLRRC37A2 located immediately 3' through exon 1/2. A total of 15 different 8-mer neoantigen peptides discovered from the NSFP1 and LRRC37A2 truncations were predicted to bind to a total of 35 unique MHC class I alleles with a binding affinity of IC50<500nM.); 1 of which elicited a robust immune response. Conclusion: Our data provides a framework to identify immunogenic neoantigen candidates from fusion transcripts and suggests a potential vaccine strategy to target the immunogenic neopeptides in patients with tumors carrying the NSFP1-LRRC37A2 fusion.
Assuntos
Neoplasias da Mama , Vacinas Anticâncer , Neoplasias Mamárias Animais , Humanos , Animais , Feminino , Neoplasias da Mama/genética , Genes MHC Classe I , MamaRESUMO
Pancreatic intraepithelial neoplasia (PanIN) is a precursor to pancreatic cancer and represents a critical opportunity for cancer interception. However, the number, size, shape, and connectivity of PanINs in human pancreatic tissue samples are largely unknown. In this study, we quantitatively assessed human PanINs using CODA, a novel machine-learning pipeline for 3D image analysis that generates quantifiable models of large pieces of human pancreas with single-cell resolution. Using a cohort of 38 large slabs of grossly normal human pancreas from surgical resection specimens, we identified striking multifocality of PanINs, with a mean burden of 13 spatially separate PanINs per cm3 of sampled tissue. Extrapolating this burden to the entire pancreas suggested a median of approximately 1000 PanINs in an entire pancreas. In order to better understand the clonal relationships within and between PanINs, we developed a pipeline for CODA-guided multi-region genomic analysis of PanINs, including targeted and whole exome sequencing. Multi-region assessment of 37 PanINs from eight additional human pancreatic tissue slabs revealed that almost all PanINs contained hotspot mutations in the oncogene KRAS, but no gene other than KRAS was altered in more than 20% of the analyzed PanINs. PanINs contained a mean of 13 somatic mutations per region when analyzed by whole exome sequencing. The majority of analyzed PanINs originated from independent clonal events, with distinct somatic mutation profiles between PanINs in the same tissue slab. A subset of the analyzed PanINs contained multiple KRAS mutations, suggesting a polyclonal origin even in PanINs that are contiguous by rigorous 3D assessment. This study leverages a novel 3D genomic mapping approach to describe, for the first time, the spatial and genetic multifocality of human PanINs, providing important insights into the initiation and progression of pancreatic neoplasia.
RESUMO
Immune checkpoint blockade (ICB) has demonstrated efficacy by reinvigorating immune cytotoxicity against tumors. However, the mechanisms underlying how ICB induces responses in a subset of patients remain unclear. Using bulk and single-cell transcriptomic cohorts of melanoma patients receiving ICB, we proposed a clustering model based on the expression of an antigen-presenting machinery (APM) signature consisting of 23 genes in a forward-selection manner. We characterized four APM clusters associated with distinct immune characteristics, cancer hallmarks, and patient prognosis in melanoma. The model predicts differential regulation of APM genes during ICB, which shaped ICB responsiveness. Surprisingly, while immunogenically hot tumors with high baseline APM expression prior to treatment are correlated with a better response to ICB than cold tumors with low APM expression, a subset of hot tumors with the highest pre-ICB APM expression fail to upregulate APM expression during treatment. In addition, they undergo immunoediting and display infiltration of exhausted T cells. In comparison, tumors associated with the best patient prognosis demonstrate significant APM upregulation and immune infiltration following ICB. They also show infiltration of tissue-resident memory T cells, shaping prolonged antitumor immunity. Using only pre-treatment transcriptomic data, our model predicts the dynamic APM-mediated tumor-immune interactions in response to ICB and provides insights into the immune escape mechanisms in hot tumors that compromise the ICB efficacy. We highlight the prognostic value of APM expression in predicting immune response in chronic diseases.
Assuntos
Imunoterapia , Melanoma , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Inibidores de Checkpoint ImunológicoRESUMO
Tumor mutation burden is an imperfect proxy of tumor foreignness and has therefore failed to consistently demonstrate clinical utility in predicting responses in the context of immunotherapy. We evaluated mutations in regions of the genome that are unlikely to undergo loss in a pan-cancer analysis across 31 tumor types (n = 9,242) and eight immunotherapy-treated cohorts of patients with non-small-cell lung cancer, melanoma, mesothelioma, and head and neck cancer (n = 524). We discovered that mutations in single-copy regions and those present in multiple copies per cell constitute a persistent tumor mutation burden (pTMB) which is linked with therapeutic response to immune checkpoint blockade. Persistent mutations were retained in the context of tumor evolution under selective pressure of immunotherapy and tumors with a high pTMB content were characterized by a more inflamed tumor microenvironment. pTMB imposes an evolutionary bottleneck that cancer cells cannot overcome and may thus drive sustained immunologic tumor control in the context of immunotherapy.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Melanoma , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Mutação , Biomarcadores Tumorais/genética , Imunidade , Imunoterapia , Microambiente TumoralRESUMO
Multiple mutations often have non-additive (epistatic) phenotypic effects. Epistasis is of fundamental biological relevance but is not well understood mechanistically. Adaptive evolution, i.e., the evolution of new biochemical activities, is rich in epistatic interactions. To better understand the principles underlying epistasis during genetic adaptation, we studied the evolution of TEM-1 ß-lactamase variants exhibiting cefotaxime resistance. We report the collection of a library of 487 observed evolutionary trajectories for TEM-1 and determine the epistasis status based on cefotaxime resistance phenotype for 206 combinations of 2-3 TEM-1 mutations involving 17 positions under adaptive selective pressure. Gain-of-function (GOF) mutations are gatekeepers for adaptation. To see if GOF phenotypes can be inferred based solely on sequence data, we calculated the enrichment of GOF mutations in the different categories of epistatic pairs. Our results suggest that this is possible because GOF mutations are particularly enriched in sign and reciprocal sign epistasis, which leave a major imprint on the sequence space accessible to evolution. We also used FoldX to explore the relationship between thermodynamic stability and epistasis. We found that mutations in observed evolutionary trajectories tend to destabilize the folded structure of the protein, albeit their cumulative effects are consistently below the protein's free energy of folding. The destabilizing effect is stronger for epistatic pairs, suggesting that modest or local alterations in folding stability can modulate catalysis. Finally, we report a significant relationship between epistasis and the degree to which two protein positions are structurally and dynamically coupled, even in the absence of ligand.
Assuntos
Bactérias , Farmacorresistência Bacteriana , Evolução Molecular , beta-Lactamases , beta-Lactamases/genética , Cefotaxima/farmacologia , Mutação com Ganho de Função , Bactérias/efeitos dos fármacos , Bactérias/genética , Epistasia Genética , Dobramento de ProteínaRESUMO
Recommendations from the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP) for interpreting sequence variants specify the use of computational predictors as "supporting" level of evidence for pathogenicity or benignity using criteria PP3 and BP4, respectively. However, score intervals defined by tool developers, and ACMG/AMP recommendations that require the consensus of multiple predictors, lack quantitative support. Previously, we described a probabilistic framework that quantified the strengths of evidence (supporting, moderate, strong, very strong) within ACMG/AMP recommendations. We have extended this framework to computational predictors and introduce a new standard that converts a tool's scores to PP3 and BP4 evidence strengths. Our approach is based on estimating the local positive predictive value and can calibrate any computational tool or other continuous-scale evidence on any variant type. We estimate thresholds (score intervals) corresponding to each strength of evidence for pathogenicity and benignity for thirteen missense variant interpretation tools, using carefully assembled independent data sets. Most tools achieved supporting evidence level for both pathogenic and benign classification using newly established thresholds. Multiple tools reached score thresholds justifying moderate and several reached strong evidence levels. One tool reached very strong evidence level for benign classification on some variants. Based on these findings, we provide recommendations for evidence-based revisions of the PP3 and BP4 ACMG/AMP criteria using individual tools and future assessment of computational methods for clinical interpretation.
Assuntos
Calibragem , Humanos , Consenso , Escolaridade , VirulênciaRESUMO
TP53 mutation is the most frequent genetic event in head and neck squamous cell carcinoma (HNSCC), found in more than 80% of patients with human papillomavirus-negative disease. As mutations in the TP53 gene are associated with worse outcomes in HNSCC, novel therapeutic approaches are needed for patients with TP53-mutated tumors. The National Cancer Institute sponsored a Clinical Trials Planning Meeting to address the issues of identifying and developing clinical trials for patients with TP53 mutations. Subcommittees, or breakout groups, were tasked with developing clinical studies in both the locally advanced and recurrent and/or metastatic (R/M) disease settings as well as considering signal-seeking trial designs. A fourth breakout group was focused on identifying and standardizing biomarker integration into trial design; this information was provided to the other breakout groups prior to the meeting to aid in study development. A total of 4 concepts were prioritized to move forward for further development and implementation. This article summarizes the proceedings of the Clinical Trials Planning Meeting with the goal of developing clinical trials for patients with TP53-mutant HNSCC that can be conducted within the National Clinical Trials Network.
Assuntos
Neoplasias de Cabeça e Pescoço , Infecções por Papillomavirus , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/terapia , Proteína Supressora de Tumor p53/genética , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/genética , Genes p53 , MutaçãoRESUMO
Introduction: The magnitude of response to immune checkpoint inhibitor (ICI) therapy may be sex-dependent, as females have lower response rates and decreased survival after ICI monotherapy. The mechanisms underlying this sex dimorphism in ICI response are unknown, and may be related to sex-driven differences in the immunogenomic landscape of tumors that shape anti-tumor immune responses in the context of therapy. Methods: To investigate the association of immunogenic mutations with HLA haplotypes, we leveraged whole exome sequence data and HLA genotypes from 482 non-small cell lung cancer (NSCLC) tumors from The Cancer Genome Atlas (TCGA). To explore sex-specific genomic features linked with ICI response, we analyzed whole exome sequence data from patients with NSCLC treated with ICI. Tumor mutational burden (TMB), HLA class I and II restricted immunogenic missense mutation (IMM) load, and mutational smoking signature were defined for each tumor. IMM load was combined with HLA class I and II haplotypes and correlated with therapeutic response and survival following ICI treatment. We examined rates of durable clinical benefit (DCB) for at least six months from ICI treatment initiation. Findings were validated utilizing whole exome sequence data from an independent cohort of ICI treated NSCLC. Results: Analysis of whole exome sequence data from NSCLC tumors of females and males revealed that germline HLA class II diversity (≥9 unique HLA alleles) was associated with higher tumor class II IMM load in females (p=0.01) and not in males (p=0.64). Similarly, in tumors of female patients, somatic HLA class II loss of heterozygosity was associated with increased IMM load (p=0.01) while this association was not observed in tumors in males (p=0.20). In females, TMB (p=0.005), class I IMM load (p=0.005), class II IMM load (p=0.004), and mutational smoking signature (p<0.001) were significantly higher in tumors responding to ICI as compared to non-responding tumors. In contrast, among males, there was no significant association between DCB and any of these features. When IMM was considered in the context of HLA zygosity, high MHC-II restricted IMM load and high HLA class II diversity was significantly associated with overall survival in males (p=0.017). Conclusions: Inherent sex-driven differences in immune surveillance affect the immunogenomic determinants of response to ICI and likely mediate the dimorphic outcomes with ICI therapy. Deeper understanding of the selective pressures and mechanisms of immune escape in tumors in males and females can inform patient selection strategies and can be utilized to further hone immunotherapy approaches in cancer.
RESUMO
MOTIVATION: Multi-region sequencing of solid tumors can improve our understanding of intratumor subclonal diversity and the evolutionary history of mutational events. Due to uncertainty in clonal composition and the multitude of possible ancestral relationships between clones, elucidating the most probable relationships from bulk tumor sequencing poses statistical and computational challenges. RESULTS: We developed a Bayesian hierarchical model called PICTograph to model uncertainty in assigning mutations to subclones, to enable posterior distributions of cancer cell fractions (CCFs) and to visualize the most probable ancestral relationships between subclones. Compared with available methods, PICTograph provided more consistent and accurate estimates of CCFs and improved tree inference over a range of simulated clonal diversity. Application of PICTograph to multi-region whole-exome sequencing of tumors from individuals with pancreatic cancer precursor lesions confirmed known early-occurring mutations and indicated substantial molecular diversity, including 6-12 distinct subclones and intra-sample mixing of subclones. Using ensemble-based visualizations, we highlight highly probable evolutionary relationships recovered in multiple models. PICTograph provides a useful approximation to evolutionary inference from cross-sectional multi-region sequencing, particularly for complex cases. AVAILABILITY AND IMPLEMENTATION: https://github.com/KarchinLab/pictograph. The data underlying this article will be shared on reasonable request to the corresponding author. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Assuntos
Neoplasias , Humanos , Teorema de Bayes , Estudos Transversais , Neoplasias/genética , Análise de Sequência , Mutação , Células Clonais , Filogenia , SoftwareRESUMO
Human leukocyte antigen (HLA) expression contributes to the activation of antitumor immunity through interactions with T-cell receptors. Pan-cancer HLA-mediated immunogenicity and immunoediting mechanisms have not been systematically studied previously. In a retrospective analysis of 33 tumor types from the Cancer Genome Atlas (TCGA), we characterized the differential expression of HLA class I and class II genes across various oncogenic pathways and immune subtypes. While HLA I genes were upregulated in all immunogenically hot tumors, HLA II genes were upregulated in an inflammatory immune subtype associated with best prognosis and were systematically downregulated in specific oncogenic pathways. A subset of immunogenically hot tumors which upregulated HLA class I but not class II genes exploited HLA-mediated escape strategies. Furthermore, with a machine learning model, we demonstrated that HLA gene expression data can be used to predict the immune subtypes of patients receiving immune checkpoint blockade and stratify patient survival. Interestingly, tumors with the highest immune infiltration did not have the best prognosis but showed significantly higher immune exhaustion. IMPLICATIONS: Taken together, we highlight the prognostic potential of HLA genes in immunotherapies and suggest that higher tumor immunogenicity mediated by HLA expression may sometimes lead to tumor escape under strong selective pressure.
Assuntos
Antígenos de Histocompatibilidade Classe I , Neoplasias , Evasão Tumoral , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Imunoterapia , Neoplasias/genética , Neoplasias/imunologia , Estudos RetrospectivosRESUMO
Mesothelioma is a rare and fatal cancer with limited therapeutic options until the recent approval of combination immune checkpoint blockade. Here we report the results of the phase 2 PrE0505 trial ( NCT02899195 ) of the anti-PD-L1 antibody durvalumab plus platinum-pemetrexed chemotherapy for 55 patients with previously untreated, unresectable pleural mesothelioma. The primary endpoint was overall survival compared to historical control with cisplatin and pemetrexed chemotherapy; secondary and exploratory endpoints included safety, progression-free survival and biomarkers of response. The combination of durvalumab with chemotherapy met the pre-specified primary endpoint, reaching a median survival of 20.4 months versus 12.1 months with historical control. Treatment-emergent adverse events were consistent with known side effects of chemotherapy, and all adverse events due to immunotherapy were grade 2 or lower. Integrated genomic and immune cell repertoire analyses revealed that a higher immunogenic mutation burden coupled with a more diverse T cell repertoire was linked to favorable clinical outcome. Structural genome-wide analyses showed a higher degree of genomic instability in responding tumors of epithelioid histology. Patients with germline alterations in cancer predisposing genes, especially those involved in DNA repair, were more likely to achieve long-term survival. Our findings indicate that concurrent durvalumab with platinum-based chemotherapy has promising clinical activity and that responses are driven by the complex genomic background of malignant pleural mesothelioma.
Assuntos
Anticorpos Monoclonais/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Cisplatino/uso terapêutico , Mesotelioma Maligno/tratamento farmacológico , Inibidores da Síntese de Ácido Nucleico/uso terapêutico , Pemetrexede/uso terapêutico , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Monoclonais/efeitos adversos , Antineoplásicos Imunológicos/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carboplatina/uso terapêutico , Reparo do DNA/genética , Feminino , Predisposição Genética para Doença/genética , Mutação em Linhagem Germinativa/genética , Humanos , Masculino , Mesotelioma Maligno/genética , Mesotelioma Maligno/mortalidade , Pessoa de Meia-Idade , Inibidores da Síntese de Ácido Nucleico/efeitos adversos , Pemetrexede/efeitos adversos , Intervalo Livre de Progressão , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genéticaRESUMO
PURPOSE: Melanoma is a biologically heterogeneous disease composed of distinct clinicopathologic subtypes that frequently resist treatment. To explore the evolution of treatment resistance and metastasis, we used a combination of temporal and multilesional tumor sampling in conjunction with whole-exome sequencing of 110 tumors collected from 7 patients with cutaneous (n = 3), uveal (n = 2), and acral (n = 2) melanoma subtypes. EXPERIMENTAL DESIGN: Primary tumors, metastases collected longitudinally, and autopsy tissues were interrogated. All but 1 patient died because of melanoma progression. RESULTS: For each patient, we generated phylogenies and quantified the extent of genetic diversity among tumors, specifically among putative somatic alterations affecting therapeutic resistance. CONCLUSIONS: In 4 patients who received immunotherapy, we found 1-3 putative acquired and intrinsic resistance mechanisms coexisting in the same patient, including mechanisms that were shared by all tumors within each patient, suggesting that future therapies directed at overcoming intrinsic resistance mechanisms may be broadly effective.