Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 42(18): e111620, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37545364

RESUMO

Long noncoding RNAs (lncRNAs) influence the transcription of gene networks in many cell types, but their role in tumor-associated macrophages (TAMs) is still largely unknown. We found that the lncRNA ADPGK-AS1 was substantially upregulated in artificially induced M2-like human macrophages, macrophages exposed to lung cancer cells in vitro, and TAMs from human lung cancer tissue. ADPGK-AS1 is partly located within mitochondria and binds to the mitochondrial ribosomal protein MRPL35. Overexpression of ADPGK-AS1 in macrophages upregulates the tricarboxylic acid cycle and promotes mitochondrial fission, suggesting a phenotypic switch toward an M2-like, tumor-promoting cytokine release profile. Macrophage-specific knockdown of ADPGK-AS1 induces a metabolic and phenotypic switch (as judged by cytokine profile and production of reactive oxygen species) to a pro-inflammatory tumor-suppressive M1-like state, inhibiting lung tumor growth in vitro in tumor cell-macrophage cocultures, ex vivo in human tumor precision-cut lung slices, and in vivo in mice. Silencing ADPGK-AS1 in TAMs may thus offer a novel therapeutic strategy for lung cancer.


Assuntos
Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Citocinas/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Macrófagos/metabolismo , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
4.
Cancers (Basel) ; 13(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34439281

RESUMO

Ever since RNA sequencing of whole genomes and transcriptomes became available, numerous RNA transcripts without having the classic function of encoding proteins have been discovered. Long non-coding RNAs (lncRNAs) with a length greater than 200 nucleotides were considered as "junk" in the beginning, but it has increasingly become clear that lncRNAs have crucial roles in regulating a variety of cellular mechanisms and are often deregulated in several diseases, such as cancer. Lung cancer is the leading cause of cancer-related deaths and has a survival rate of less than 10%. Immune cells infiltrating the tumor microenvironment (TME) have been shown to have a great effect on tumor development with macrophages being the major cell type within the TME. Macrophages can inherit an inflammatory M1 or an anti-inflammatory M2 phenotype. Tumor-associated macrophages, which are predominantly polarized to M2, favor tumor growth, angiogenesis, and metastasis. In this review, we aimed to describe the complex roles and functions of lncRNAs in macrophages and their influence on lung cancer development and progression through the TME.

5.
Mol Cell Biol ; 41(10): e0008121, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34251884

RESUMO

Cullin-4 ubiquitin ligase (CRL4) complexes are differentially composed and highly dynamic protein assemblies that control many biological processes, including the global genome nucleotide excision repair (GG-NER) pathway. Here, we identified the kinase mitogen-activated protein kinase kinase kinase 1 (MEKK1) as a novel constitutive interactor of a cytosolic CRL4 complex that disassembles after DNA damage due to the caspase-mediated cleavage of MEKK1. The kinase activity of MEKK1 was important to trigger autoubiquitination of the CRL4 complex by K48- and K63-linked ubiquitin chains. MEKK1 knockdown prohibited DNA damage-induced degradation of the CRL4 component DNA-damage binding protein 2 (DDB2) and the CRL4 substrate p21 and also cell recovery and survival. A ubiquitin replacement strategy revealed a contribution of K63-branched ubiquitin chains for DNA damage-induced DDB2/p21 decay, cell cycle regulation, and cell survival. These data might also have implications for cancer, as frequently occurring mutations of MEKK1 might have an impact on genome stability and the therapeutic efficacy of CRL4-dependent immunomodulatory drugs such as thalidomide derivatives.


Assuntos
Reparo do DNA/fisiologia , MAP Quinase Quinase Quinase 1/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Inibidor de Quinase Dependente de Ciclina p21/genética , DNA/química , Dano ao DNA/fisiologia , Reparo do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Células HeLa , Humanos , MAP Quinase Quinase Quinase 1/genética , Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Ubiquitinação
6.
Cancer Res ; 80(19): 4199-4211, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32816854

RESUMO

Although NF-κB is known to play a pivotal role in lung cancer, contributing to tumor growth, microenvironmental changes, and metastasis, the epigenetic regulation of NF-κB in tumor context is largely unknown. Here we report that the IKK2/NF-κB signaling pathway modulates metastasis-associated protein 2 (MTA2), a component of the nucleosome remodeling and deacetylase complex (NuRD). In triple transgenic mice, downregulation of IKK2 (Sftpc-cRaf-IKK2DN) in cRaf-induced tumors in alveolar epithelial type II cells restricted tumor formation, whereas activation of IKK2 (Sftpc-cRaf-IKK2CA) supported tumor growth; both effects were accompanied by altered expression of MTA2. Further studies employing genetic inhibition of MTA2 suggested that in primary tumor growth, independent of IKK2, MTA2/NuRD corepressor complex negatively regulates NF-κB signaling and tumor growth, whereas later dissociation of MTA2/NuRD complex from the promoter of NF-κB target genes and IKK2-dependent positive regulation of MTA2 leads to activation of NF-κB signaling, epithelial-mesenchymal transition, and lung tumor metastasis. These findings reveal a previously unrecognized biphasic role of MTA2 in IKK2/NF-κB-driven primary-to-metastatic lung tumor progression. Addressing the interaction between MTA2 and NF-κB would provide potential targets for intervention of tumor growth and metastasis. SIGNIFICANCE: These findings strongly suggest a prominent role of MTA2 in primary tumor growth, lung metastasis, and NF-κB signaling modulatory functions.


Assuntos
Histona Desacetilases/metabolismo , Neoplasias Pulmonares/patologia , NF-kappa B/metabolismo , Proteínas Repressoras/metabolismo , Transativadores/metabolismo , Animais , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Histona Desacetilases/genética , Humanos , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Inflamação/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , NF-kappa B/genética , Proteínas Repressoras/genética , Transdução de Sinais , Transativadores/genética , Microambiente Tumoral
7.
Cell Signal ; 65: 109463, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31693875

RESUMO

Lung cancer is the leading cause of cancer death for both men and women and accounts for almost 18.4% of all deaths due to cancer worldwide, with the global incidence increasing by approximately 0.5% per year. Lung cancer is regarded as a devastating type of cancer owing to its high prevalence, reduction in the health-related quality of life, frequently delayed diagnosis, low response rate, high toxicity, and resistance to available therapeutic options. The highly heterogeneous nature of this cancer with a proximal-to-distal distribution throughout the respiratory tract dramatically affects its diagnostic and therapeutic management. The diverse composition and plasticity of lung epithelial cells across the respiratory tract are regarded as significant factors underlying lung cancer heterogeneity. Therefore, definitions of the cells of origin for different types of lung cancer are urgently needed to understand lung cancer biology and to achieve early diagnosis and develop cell-targeted therapies. In the present review, we will discuss the current understanding of the cellular and molecular alterations in distinct lung epithelial cells that result in each type of lung cancer.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Carcinoma de Células Escamosas/metabolismo , Células Epiteliais/citologia , Neoplasias Pulmonares/metabolismo , Neoplasia de Células Basais/metabolismo , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Células Epiteliais Alveolares/citologia , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Plasticidade Celular , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasia de Células Basais/genética , Neoplasia de Células Basais/patologia , Células Neuroendócrinas/citologia , Células Neuroendócrinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA