Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 1860: 289-301, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30317513

RESUMO

Endocytosis is a fundamental process underlying diverse eukaryotic physiology. The terminal stage of this process is membrane fusion between the perimeter membrane of a late endosome filled with intraluminal vesicles, or multivesicular body (MVB), and the lysosome membrane to facilitate catabolism of internalized biomaterials or surface polytopic proteins. To comprehensively understand the mechanisms underlying MVB-lysosome membrane fusion, we developed a quantitative, cell-free assay to study this SNARE-mediated event in molecular detail using Saccharomyces cerevisiae and its vacuolar lysosome, or vacuole, as models. This involves separately isolating organelles from two yeast strains each expressing a different complementary fusion probe targeted to the lumen of either MVBs or vacuoles. Isolated organelles are mixed in vitro under fusogenic conditions. Upon MVB-vacuole membrane fusion, luminal contents mix to facilitate probe interaction, reconstituting ß-lactamase activity recorded by a colorimetric enzyme activity assay. This method accommodates a multitude of approaches (e.g., genetics, addition of purified protein reagents) to study this process in isolation, and in theory could be repurposed to study other SNARE-mediated fusion events within cells.


Assuntos
Proteínas SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Lisossomos/metabolismo , Fusão de Membrana , Corpos Multivesiculares/metabolismo , Vacúolos/metabolismo
2.
Dev Cell ; 47(1): 80-97.e6, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30269949

RESUMO

Upon vacuolar lysosome (or vacuole) fusion in S. cerevisiae, a portion of membrane is internalized and catabolized. Formation of this intralumenal fragment (ILF) is important for organelle protein and lipid homeostasis and remodeling. But how ILF formation is optimized for membrane turnover is not understood. Here, we show that fewer ILFs form when the interaction between the Rab-GTPase Ypt7 and its effector Vps41 (a subunit of the tethering complex HOPS) is interrupted by a point mutation (Ypt7-D44N). Subsequent phosphorylation of Vps41 by the casein kinase Yck3 prevents stabilization of trans-SNARE complexes needed for lipid bilayer pore formation. Impairing ILF formation prevents clearance of misfolded proteins from vacuole membranes and promotes organelle permeability and cell death. We propose that HOPS coordinates Rab, kinase, and SNARE cycles to modulate ILF size during vacuole fusion, regulating lipid and protein turnover important for quality control and membrane integrity.


Assuntos
Fusão de Membrana/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Vacúolos/fisiologia , Proteínas rab de Ligação ao GTP/fisiologia , Caseína Quinase I/metabolismo , Homeostase , Bicamadas Lipídicas , Metabolismo dos Lipídeos , Lipídeos/fisiologia , Lisossomos , Permeabilidade , Fosforilação , Fosfotransferases , Proteólise , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/fisiologia , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
3.
Traffic ; 19(2): 138-149, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29135058

RESUMO

When marked for degradation, surface receptor and transporter proteins are internalized and delivered to endosomes where they are packaged into intralumenal vesicles (ILVs). Many rounds of ILV formation create multivesicular bodies (MVBs) that fuse with lysosomes exposing ILVs to hydrolases for catabolism. Despite being critical for protein degradation, the molecular underpinnings of MVB-lysosome fusion remain unclear, although machinery underlying other lysosome fusion events is implicated. But how then is specificity conferred? And how is MVB maturation and fusion coordinated for efficient protein degradation? To address these questions, we developed a cell-free MVB-lysosome fusion assay using Saccharomyces cerevisiae as a model. After confirming that the Rab7 ortholog Ypt7 and the multisubunit tethering complex HOPS (homotypic fusion and vacuole protein sorting complex) are required, we found that the Qa-SNARE Pep12 distinguishes this event from homotypic lysosome fusion. Mutations that impair MVB maturation block fusion by preventing Ypt7 activation, confirming that a Rab-cascade mechanism harmonizes MVB maturation with lysosome fusion.


Assuntos
Endossomos/metabolismo , Lisossomos/metabolismo , Corpos Multivesiculares/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico/fisiologia , Sistema Livre de Células , Endocitose/fisiologia , Fusão de Membrana/fisiologia , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
4.
Mol Biol Cell ; 29(3): 317-325, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29212874

RESUMO

Loss-of-function mutations in human endosomal Na+(K+)/H+ exchangers (NHEs) NHE6 and NHE9 are implicated in neurological disorders including Christianson syndrome, autism, and attention deficit and hyperactivity disorder. These mutations disrupt retention of surface receptors within neurons and glial cells by affecting their delivery to lysosomes for degradation. However, the molecular basis of how these endosomal NHEs control endocytic trafficking is unclear. Using Saccharomyces cerevisiae as a model, we conducted cell-free organelle fusion assays to show that transport activity of the orthologous endosomal NHE Nhx1 is important for multivesicular body (MVB)-vacuolar lysosome fusion, the last step of endocytosis required for surface protein degradation. We find that deleting Nhx1 disrupts the fusogenicity of the MVB, not the vacuole, by targeting pH-sensitive machinery downstream of the Rab-GTPase Ypt7 needed for SNARE-mediated lipid bilayer merger. All contributing mechanisms are evolutionarily conserved offering new insight into the etiology of human disorders linked to loss of endosomal NHE function.


Assuntos
Corpos Multivesiculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Trocadores de Sódio-Hidrogênio/metabolismo , Trocadores de Sódio-Hidrogênio/fisiologia , Transporte Biológico , Endocitose/fisiologia , Endossomos/metabolismo , Humanos , Lisossomos/metabolismo , Fusão de Membrana/fisiologia , Corpos Multivesiculares/fisiologia , Antiportadores de Potássio-Hidrogênio/metabolismo , Transporte Proteico , Proteólise , Proteínas SNARE/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
5.
Dev Cell ; 40(2): 151-167, 2017 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-28017618

RESUMO

Lysosomes rely on their resident transporter proteins to return products of catabolism to the cell for reuse and for cellular signaling, metal storage, and maintaining the lumenal environment. Despite their importance, little is known about the lifetime of these transporters or how they are regulated. Using Saccharomyces cerevisiae as a model, we discovered a new pathway intrinsic to homotypic lysosome membrane fusion that is responsible for their degradation. Transporter proteins are selectively sorted by the docking machinery into an area between apposing lysosome membranes, which is internalized and degraded by lumenal hydrolases upon organelle fusion. These proteins have diverse lifetimes that are regulated in response to protein misfolding, changing substrate levels, or TOR activation. Analogous to endocytosis for controlling surface protein levels, the "intralumenal fragment pathway" is critical for lysosome membrane remodeling required for organelle function in the context of cellular protein quality control, ion homeostasis, and metabolism.


Assuntos
Lisossomos/metabolismo , Fusão de Membrana , Proteínas de Membrana Transportadoras/metabolismo , Proteólise , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Autofagia/efeitos dos fármacos , Cicloeximida/farmacologia , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Concentração de Íons de Hidrogênio , Lisossomos/efeitos dos fármacos , Fusão de Membrana/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , ATPases Vacuolares Próton-Translocadoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA