Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36142045

RESUMO

Along with pharmacological applications due to bioactive elements such as flavonoids and glycyrrhizin, licorice has positive influences on the rehabilitation, rejuvenation, and management of salt-affected degraded lands in arid regions. These features made this plant widely appreciated worldwide when climate change is showing detrimental impacts for crop production and food security. However, a growing demand followed by irrational harvesting of wild licorice plants has led to substantial dwindling of its natural habitat. There is an increasing need to protect the plant biodiversity since sustainability can be a problem with wild harvesting. Therefore, it is important to investigate cultivation technologies of licorice under harsh environments, while this plant can adapt to a wide range of climates. Thus, in this review, we studied, analyzed and summarized the literature on licorice cultivation methods counteracting the most common environmental stresses in the Aral Sea region. Particularly, the current knowledge was rationalized regarding on cultivation technologies for alleviating salt stress thereby improving crop production. We also highlighted that future research directions on licorice breeding and genomics that might facilitate to produce more resilient and sustainable licorice genotypes to renovate agricultural productivity under disastrous ecology and climate change of the arid regions. Whereas this area possesses all prerequisite conditions needed for successful cultivation of the alternative cash crop.


Assuntos
Glycyrrhiza , Triterpenos , Flavonoides , Glycyrrhiza/metabolismo , Ácido Glicirrízico/metabolismo , Melhoramento Vegetal , Extratos Vegetais/metabolismo
2.
Agric Syst ; 193: 103168, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36284566

RESUMO

Context: The COVID-19 pandemic has been affecting health and economies across the world, although the nature of direct and indirect effects on Asian agrifood systems and food security has not yet been well understood. Objectives: This paper assesses the initial responses of major farming and food systems to COVID-19 in 25 Asian countries, and considers the implications for resilience, food and nutrition security and recovery policies by the governments. Methods: A conceptual systems model was specified including key pathways linking the direct and indirect effects of COVID-19 to the resilience and performance of the four principal Asian farming and food systems, viz, lowland rice based; irrigated wheat based; hill mixed; and dryland mixed systems. Based on this framework, a systematic survey of 2504 key informants (4% policy makers, 6% researchers or University staff, 6% extension workers, 65% farmers, and 19% others) in 20 Asian countries was conducted and the results assessed and analysed. Results and conclusion: The principal Asian farming and food systems were moderately resilient to COVID-19, reinforced by government policies in many countries that prioritized food availability and affordability. Rural livelihoods and food security were affected primarily because of disruptions to local labour markets (especially for off-farm work), farm produce markets (notably for perishable foods) and input supply chains (i.e., seeds and fertilisers). The overall effects on system performance were most severe in the irrigated wheat based system and least severe in the hill mixed system, associated in the latter case with greater resilience and diversification and less dependence on external inputs and long market chains. Farming and food systems' resilience and sustainability are critical considerations for recovery policies and programmes, especially in relation to economic performance that initially recovered more slowly than productivity, natural resources status and social capital. Overall, the resilience of Asian farming and food systems was strong because of inherent systems characteristics reinforced by public policies that prioritized staple food production and distribution as well as complementary welfare programmes. With the substantial risks to plant- and animal-sourced food supplies from future zoonoses and the institutional vulnerabilities revealed by COVID-19, efforts to improve resilience should be central to recovery programmes. Significance: This study was the first Asia-wide systems assessment of the effects of COVID-19 on agriculture and food systems, differentiating the effects of the pandemic across the four principal regional farming and food systems in the region.

3.
Front Plant Sci ; 11: 607102, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33365043

RESUMO

The effects of climate change and soil salinization on dryland ecosystems are already widespread, and ensuring food security is a crucial challenge. In this article, we demonstrate changes in growth performance and seed quality of a new high-yielding quinoa genotype (Q5) exposed to sodium chloride (NaCl), sodium sulfate (Na2SO4), and mixed salts (NaCl + Na2SO4). Differential responses to salt stress in growth performance, seed yield, and seed quality were identified. High salinity (mixed Na2SO4 + NaCl) reduces plant height by ∼30%, shoot and root dry weights by ∼29%, head panicle length and panicle weight by 36-43%, and seed yield by 37%, compared with control conditions. However, the 1,000-seed weight changes insignificantly under salinity. High content of essential minerals, such as Fe, Zn, and Ca in quinoa Q5 seeds produced under salinity, gives the Q5 genotype a remarkable advantage for human consumption. Biomarkers detected in our studies show that the content of most essential amino acids is unchanged under salinity. The content of amino acids Pro, Gly, and Ile positively correlates with Na+ concentration in soil and seeds, whereas the content of squalene and most fatty acids negatively correlates. Variation in squalene content under increasing salinity is most likely due to toxic effects of sodium and chlorine ions as a result of the decrease in membrane permeability for ion movement as a protective reaction to an increase in the sodium ion concentration. Low squalene accumulation might also occur to redirect the NADPH cofactor to enhance the biosynthesis of proline in response to salinity, as both syntheses (squalene and proline) require NADPH. This evidence can potentially be used by the food and pharmaceutical industries in the development of new food and health products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA