Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Blood ; 139(3): 439-451, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34614145

RESUMO

The hormone erythroferrone (ERFE) is produced by erythroid cells in response to hemorrhage, hypoxia, or other erythropoietic stimuli, and it suppresses the hepatic production of the iron-regulatory hormone hepcidin, thereby mobilizing iron for erythropoiesis. Suppression of hepcidin by ERFE is believed to be mediated by interference with paracrine bone morphogenetic protein (BMP) signaling that regulates hepcidin transcription in hepatocytes. In anemias with ineffective erythropoiesis, ERFE is pathologically overproduced, but its contribution to the clinical manifestations of these anemias is not well understood. We generated 3 lines of transgenic mice with graded erythroid overexpression of ERFE and found that they developed dose-dependent iron overload, impaired hepatic BMP signaling, and relative hepcidin deficiency. These findings add to the evidence that ERFE is a mediator of iron overload in conditions in which ERFE is overproduced, including anemias with ineffective erythropoiesis. At the highest levels of ERFE overexpression, the mice manifested decreased perinatal survival, impaired growth, small hypofunctional kidneys, decreased gonadal fat depots, and neurobehavioral abnormalities, all consistent with impaired organ-specific BMP signaling during development. Neutralizing excessive ERFE in congenital anemias with ineffective erythropoiesis may not only prevent iron overload but may have additional benefits for growth and development.


Assuntos
Citocinas/metabolismo , Deficiências do Desenvolvimento/metabolismo , Células Eritroides/metabolismo , Sobrecarga de Ferro/metabolismo , Proteínas Musculares/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Citocinas/genética , Deficiências do Desenvolvimento/etiologia , Deficiências do Desenvolvimento/genética , Células Eritroides/citologia , Feminino , Hepcidinas/metabolismo , Sobrecarga de Ferro/etiologia , Sobrecarga de Ferro/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Musculares/genética , Transdução de Sinais , Regulação para Cima
2.
Cancer Discov ; 12(4): 1046-1069, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34930786

RESUMO

Focal amplifications (FA) can mediate targeted therapy resistance in cancer. Understanding the structure and dynamics of FAs is critical for designing treatments that overcome plasticity-mediated resistance. We developed a melanoma model of dual MAPK inhibitor (MAPKi) resistance that bears BRAFV600 amplifications through either extrachromosomal DNA (ecDNA)/double minutes (DM) or intrachromosomal homogenously staining regions (HSR). Cells harboring BRAFV600E FAs displayed mode switching between DMs and HSRs, from both de novo genetic changes and selection of preexisting subpopulations. Plasticity is not exclusive to ecDNAs, as cells harboring HSRs exhibit drug addiction-driven structural loss of BRAF amplicons upon dose reduction. FA mechanisms can couple with kinase domain duplications and alternative splicing to enhance resistance. Drug-responsive amplicon plasticity is observed in the clinic and can involve other MAPK pathway genes, such as RAF1 and NRAS. BRAF FA-mediated dual MAPKi-resistant cells are more sensitive to proferroptotic drugs, extending the spectrum of ferroptosis sensitivity in MAPKi resistance beyond cases of dedifferentiation. SIGNIFICANCE: Understanding the structure and dynamics of oncogene amplifications is critical for overcoming tumor relapse. BRAF amplifications are highly plastic under MAPKi dosage challenges in melanoma, through involvement of de novo genomic alterations, even in the HSR mode. Moreover, BRAF FA-driven, dual MAPKi-resistant cells extend the spectrum of resistance-linked ferroptosis sensitivity. This article is highlighted in the In This Issue feature, p. 873.


Assuntos
Melanoma , Proteínas Proto-Oncogênicas B-raf , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Mutação , Recidiva Local de Neoplasia/tratamento farmacológico , Oncogenes , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo
3.
J Hepatol ; 72(5): 946-959, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31899206

RESUMO

BACKGROUND & AIMS: Chronic alcohol consumption is a leading risk factor for the development of hepatocellular carcinoma (HCC), which is associated with a marked increase in hepatic expression of pro-inflammatory IL-17A and its receptor IL-17RA. METHODS: Genetic deletion and pharmacological blocking were used to characterize the role of IL-17A/IL-17RA signaling in the pathogenesis of HCC in mouse models and human specimens. RESULTS: We demonstrate that the global deletion of the Il-17ra gene suppressed HCC in alcohol-fed diethylnitrosamine-challenged Il-17ra-/- and major urinary protein-urokinase-type plasminogen activator/Il-17ra-/- mice compared with wild-type mice. When the cell-specific role of IL-17RA signaling was examined, the development of HCC was decreased in both alcohol-fed Il-17raΔMΦ and Il-17raΔHep mice devoid of IL-17RA in myeloid cells and hepatocytes, but not in Il-17raΔHSC mice (deficient in IL-17RA in hepatic stellate cells). Deletion of Il-17ra in myeloid cells ameliorated tumorigenesis via suppression of pro-tumorigenic/inflammatory and pro-fibrogenic responses in alcohol-fed Il-17raΔMΦ mice. Remarkably, despite a normal inflammatory response, alcohol-fed Il-17raΔHep mice developed the fewest tumors (compared with Il-17raΔMΦ mice), with reduced steatosis and fibrosis. Steatotic IL-17RA-deficient hepatocytes downregulated the expression of Cxcl1 and other chemokines, exhibited a striking defect in tumor necrosis factor (TNF)/TNF receptor 1-dependent caspase-2-SREBP1/2-DHCR7-mediated cholesterol synthesis, and upregulated the production of antioxidant vitamin D3. The pharmacological blocking of IL-17A/Th-17 cells using anti-IL-12/IL-23 antibodies suppressed the progression of HCC (by 70%) in alcohol-fed mice, indicating that targeting IL-17 signaling might provide novel strategies for the treatment of alcohol-induced HCC. CONCLUSIONS: Overall, IL-17A is a tumor-promoting cytokine, which critically regulates alcohol-induced hepatic steatosis, inflammation, fibrosis, and HCC. LAY SUMMARY: IL-17A is a tumor-promoting cytokine, which critically regulates inflammatory responses in macrophages (Kupffer cells and bone-marrow-derived monocytes) and cholesterol synthesis in steatotic hepatocytes in an experimental model of alcohol-induced HCC. Therefore, IL-17A may be a potential therapeutic target for patients with alcohol-induced HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Hepatócitos/metabolismo , Interleucina-17/metabolismo , Células de Kupffer/metabolismo , Cirrose Hepática/complicações , Cirrose Hepática/metabolismo , Hepatopatias Alcoólicas/complicações , Hepatopatias Alcoólicas/metabolismo , Neoplasias Hepáticas/metabolismo , Transdução de Sinais/genética , Animais , Carcinogênese/induzido quimicamente , Carcinogênese/genética , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Modelos Animais de Doenças , Etanol/efeitos adversos , Deleção de Genes , Humanos , Cirrose Hepática/patologia , Hepatopatias Alcoólicas/patologia , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Interleucina-17/deficiência , Receptores de Interleucina-17/genética , Transcriptoma
4.
Nat Med ; 25(3): 433-438, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30742121

RESUMO

Artificial intelligence (AI)-based methods have emerged as powerful tools to transform medical care. Although machine learning classifiers (MLCs) have already demonstrated strong performance in image-based diagnoses, analysis of diverse and massive electronic health record (EHR) data remains challenging. Here, we show that MLCs can query EHRs in a manner similar to the hypothetico-deductive reasoning used by physicians and unearth associations that previous statistical methods have not found. Our model applies an automated natural language processing system using deep learning techniques to extract clinically relevant information from EHRs. In total, 101.6 million data points from 1,362,559 pediatric patient visits presenting to a major referral center were analyzed to train and validate the framework. Our model demonstrates high diagnostic accuracy across multiple organ systems and is comparable to experienced pediatricians in diagnosing common childhood diseases. Our study provides a proof of concept for implementing an AI-based system as a means to aid physicians in tackling large amounts of data, augmenting diagnostic evaluations, and to provide clinical decision support in cases of diagnostic uncertainty or complexity. Although this impact may be most evident in areas where healthcare providers are in relative shortage, the benefits of such an AI system are likely to be universal.


Assuntos
Aprendizado Profundo , Diagnóstico por Computador , Registros Eletrônicos de Saúde , Processamento de Linguagem Natural , Pediatria , Adolescente , Inteligência Artificial , Criança , Pré-Escolar , China , Feminino , Humanos , Lactente , Recém-Nascido , Aprendizado de Máquina , Masculino , Estudo de Prova de Conceito , Reprodutibilidade dos Testes , Estudos Retrospectivos
5.
Gastroenterology ; 156(4): 1156-1172.e6, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30445007

RESUMO

BACKGROUND & AIMS: Although there are associations among oxidative stress, reduced nicotinamide adenine dinucleotide phosphate oxidase (NOX) activation, and hepatocellular carcinoma (HCC) development, it is not clear how NOX contributes to hepatocarcinogenesis. We studied the functions of different NOX proteins in mice after administration of a liver carcinogen. METHODS: Fourteen-day-old Nox1-/- mice, Nox4-/- mice, Nox1-/-Nox4-/- (double-knockout) mice, and wild-type (WT) C57BL/6 mice were given a single intraperitoneal injection of diethylnitrosamine (DEN) and liver tumors were examined at 9 months. We also studied the effects of DEN in mice with disruption of Nox1 specifically in hepatocytes (Nox1ΔHep), hepatic stellate cells (Nox1ΔHep), or macrophages (Nox1ΔMac). Some mice were also given injections of the NOX1-specific inhibitor ML171. To study the acute effects of DEN, 8-12-week-old mice were given a single intraperitoneal injection, and liver and serum were collected at 72 hours. Liver tissues were analyzed by histologic examination, quantitative polymerase chain reaction, and immunoblots. Hepatocytes and macrophages were isolated from WT and knockout mice and analyzed by immunoblots. RESULTS: Nox4-/- mice and WT mice developed liver tumors within 9 months after administration of DEN, whereas Nox1-/- mice developed 80% fewer tumors, which were 50% smaller than those of WT mice. Nox1ΔHep and Nox1ΔHSC mice developed liver tumors of the same number and size as WT mice, whereas Nox1ΔMac developed fewer and smaller tumors, similar to Nox1-/- mice. After DEN injection, levels of tumor necrosis factor, interleukin 6 (IL6), and phosphorylated signal transducer and activator of transcription 3 were increased in livers from WT, but not Nox1-/- or Nox1ΔMac, mice. Conditioned medium from necrotic hepatocytes induced expression of NOX1 in cultured macrophages, followed by expression of tumor necrosis factor, IL6, and other inflammatory cytokines; this medium did not induce expression of IL6 or cytokines in Nox1ΔMac macrophages. WT mice given DEN followed by ML171 developed fewer and smaller liver tumors than mice given DEN followed by vehicle. CONCLUSIONS: In mice given injections of a liver carcinogen (DEN), expression of NOX1 by macrophages promotes hepatic tumorigenesis by inducing the production of inflammatory cytokines. We propose that upon liver injury, damage-associated molecular patterns released from dying hepatocytes activate liver macrophages to produce cytokines that promote tumor development. Strategies to block NOX1 or these cytokines might be developed to slow hepatocellular carcinoma progression.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Transformação Celular Neoplásica/genética , Hepatite/genética , Hepatócitos/patologia , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/patologia , Macrófagos/enzimologia , NADPH Oxidase 1/genética , NADPH Oxidase 4/genética , Alarminas/metabolismo , Animais , Carcinoma Hepatocelular/induzido quimicamente , Proliferação de Células/fisiologia , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Dietilnitrosamina , Inibidores Enzimáticos/farmacologia , Células Estreladas do Fígado , Hepatócitos/fisiologia , Humanos , Interleucina-6/metabolismo , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas Experimentais/induzido quimicamente , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidase 1/metabolismo , Necrose , Fator de Transcrição STAT3/metabolismo , Carga Tumoral , Fator de Necrose Tumoral alfa/metabolismo
6.
Hepatol Commun ; 1(10): 1043-1057, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29404441

RESUMO

Cytochrome P450 2E1 (CYP2E1) plays an important role in alcohol and toxin metabolism by catalyzing the conversion of substrates into more polar metabolites and producing reactive oxygen species. Reactive oxygen species-induced oxidative stress promotes hepatocyte injury and death, which in turn induces inflammation, activation of hepatic stellate cells, and liver fibrosis. Here, we analyzed mice expressing only the human CYP2E1 gene (hCYP2E1) to determine differences in hCYP2E1 versus endogenous mouse Cyp2e1 function with different liver injuries. After intragastric alcohol feeding, CYP2E1 expression was induced in both hCYP2E1 and wild-type (Wt) mice. hCYP2E1 mice had greater inflammation, fibrosis, and lipid peroxidation but less hepatic steatosis. In addition, hCYP2E1 mice demonstrated increased expression of fibrogenic and proinflammatory genes but decreased expression of de novo lipogenic genes compared to Wt mice. Lipidomics of free fatty acid, triacylglycerol, diacylglycerol, and cholesterol ester species and proinflammatory prostaglandins support these conclusions. Carbon tetrachloride-induced injury suppressed expression of both mouse and human CYP2E1, but again hCYP2E1 mice exhibited greater hepatic stellate cell activation and fibrosis than Wt controls with comparable expression of proinflammatory genes. By contrast, 14-day bile duct ligation induced comparable cholestatic injury and fibrosis in both genotypes. Conclusion: Alcohol-induced liver fibrosis but not hepatic steatosis is more severe in the hCYP2E1 mouse than in the Wt mouse, demonstrating the use of this model to provide insight into the pathogenesis of alcoholic liver disease. (Hepatology Communications 2017;1:1043-1057).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA