Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 43(7): 1113-1134, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38418556

RESUMO

Dysregulated macrophage responses and changes in tissue metabolism are hallmarks of chronic inflammation in the skin. However, the metabolic cues that direct and support macrophage functions in the skin are poorly understood. Here, we show that during sterile skin inflammation, the epidermis and macrophages uniquely depend on glycolysis and the TCA cycle, respectively. This compartmentalisation is initiated by ROS-induced HIF-1α stabilization leading to enhanced glycolysis in the epidermis. The end-product of glycolysis, lactate, is then exported by epithelial cells and utilized by the dermal macrophages to induce their M2-like fates through NF-κB pathway activation. In addition, we show that psoriatic skin disorder is also driven by such lactate metabolite-mediated crosstalk between the epidermis and macrophages. Notably, small-molecule inhibitors of lactate transport in this setting attenuate sterile inflammation and psoriasis disease burden, and suppress M2-like fate acquisition in dermal macrophages. Our study identifies an essential role for the metabolite lactate in regulating macrophage responses to inflammation, which may be effectively targeted to treat inflammatory skin disorders such as psoriasis.


Assuntos
Ácido Láctico , Psoríase , Camundongos , Animais , Ácido Láctico/metabolismo , Ácido Láctico/farmacologia , Pele/metabolismo , Macrófagos/metabolismo , Inflamação/metabolismo , Psoríase/metabolismo
2.
Acta Pharm Sin B ; 12(10): 3905-3923, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36213535

RESUMO

Cytochrome P4502J2 (CYP2J2) metabolizes arachidonic acid (AA) to cardioprotective epoxyeicosatrienoic acids (EETs). Dronedarone, an antiarrhythmic drug prescribed for treatment of atrial fibrillation (AF) induces cardiac adverse effects (AEs) with poorly understood mechanisms. We previously demonstrated that dronedarone inactivates CYP2J2 potently and irreversibly, disrupts AA-EET pathway leading to cardiac mitochondrial toxicity rescuable via EET enrichment. In this study, we investigated if mitigation of CYP2J2 inhibition prevents dronedarone-induced cardiac AEs. We first synthesized a deuterated analogue of dronedarone (termed poyendarone) and demonstrated that it neither inactivates CYP2J2, disrupts AA-EETs metabolism nor causes cardiac mitochondrial toxicity in vitro. Our patch-clamp experiments demonstrated that pharmacoelectrophysiology of dronedarone is unaffected by deuteration. Next, we show that dronedarone treatment or CYP2J2 knockdown in spontaneously beating cardiomyocytes indicative of depleted CYP2J2 activity exacerbates beat-to-beat (BTB) variability reflective of proarrhythmic phenotype. In contrast, poyendarone treatment yields significantly lower BTB variability compared to dronedarone in cardiomyocytes indicative of preserved CYP2J2 activity. Importantly, poyendarone and dronedarone display similar antiarrhythmic properties in the canine model of persistent AF, while poyendarone substantially reduces beat-to-beat variability of repolarization duration suggestive of diminished proarrhythmic risk. Our findings prove that deuteration of dronedarone prevents CYP2J2 inactivation and mitigates dronedarone-induced cardiac AEs.

3.
Arch Toxicol ; 96(1): 153-165, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34773126

RESUMO

Para-phenylenediamine (PPD) is one of the most used chemicals in oxidative hair dyes. However, its use has been associated with adverse effects on health, including contact dermatitis and other systemic toxicities. Novel PPD derivatives have been proposed as a safer replacement for PPD. This can be achieved if these molecules minimally permeate the skin and/or are easily metabolised by enzymes in the skin (e.g., N-acetyltransferase-1 (NAT-1)) into innocuous compounds before gaining systemic entry. This study investigated the detoxification pathway mediated by NAT-1 enzymes on 6 synthesized PPD analogues (namely, P1-P6) with different chemical properties, to study the role of functional groups on detoxification mechanisms in HaCaT skin cells. These compounds were carefully designed with different chemical properties (whereby the ortho position of PPD was substituted by nucleophile and electrophile groups to promote N-acetylation reactions, metabolism and clearance). Compounds P2-P4 N-acetylated at 54-49 nmol/mg/min, which is 1.6 times higher than N-acetylation of PPD, upregulated NAT-1 activity from 8-7% at 50 µM to 22-11% at 100 µM and showed 4 times higher rate of elimination (k equal to 0.141 ± 0.016-0.124 ± 0.01 h-1) and 3 times faster rate of clearance (0.172 ± 0.007-0.158 ± 0.005 h-1mgprotein-1) than PPD (0.0316 ± 0.0019 h-1, 0.0576 ± 0.003 h-1mg protein-1, respectively). The data suggest that nucleophile substituted compounds detoxify at a faster rate than PPD. Our metabolic and detoxification mechanistic studies revealed significantly higher rates of N-acetylation, NAT-1 activity and higher detoxification of P2-P4 in keratinocytes, suggesting the importance of nucleophilic groups at the ortho position in PPD to reduce toxicity of aniline-based dyes on human skin cells.


Assuntos
Dermatite Alérgica de Contato , Tinturas para Cabelo , Arilamina N-Acetiltransferase , Tinturas para Cabelo/química , Tinturas para Cabelo/metabolismo , Tinturas para Cabelo/toxicidade , Humanos , Isoenzimas , Fenilenodiaminas/metabolismo , Fenilenodiaminas/toxicidade
4.
Toxicol In Vitro ; 74: 105154, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33774146

RESUMO

The human cell line activation test (h-CLAT) is an OECD approved (Test No. 442E) assay to identify novel skin sensitizers. h-CLAT simulates dendritic cell activation in the skin sensitization pathway and is based on the measurement of CD54 and CD86 overexpression on monocytic, leukemic THP-1 cells. However, the current h-CLAT markers show inconsistent results with moderate and weak sensitizers. Moreover, these markers have accessory roles in cell adhesion and signaling rather than a direct role in cellular inflammation. Therefore, we have explored other inflammation-related markers in this study. PBMCs comprises a mixture of cells that resemble the complex immunological milieu in adults and were primarily used to identify markers. PBMCs (n = 10) and THP-1 cells were treated with 1-chloro-2,4-dinitrobenzene (DNCB, strong) and NiCl2 (Ni, moderate) sensitizers or DMSO (control) and incubated for 24 h. The samples were subjected to RNA sequencing to obtain log2fold change in gene expression. DNCB and NiCl2 significantly upregulated 80 genes in both cell types. Of these, CD109, CD181, CD183, CLEC5A, CLEC8A & CD354 were experimentally validated. DNCB and Ni but not isopropyl alcohol (non-sensitizer) significantly induced the expression of all novel markers except CLEC8A. Moreover, the percentage induction of all novel markers except CLEC8A satisfied the OECD acceptance criteria. In summary, we identified five novel markers that may supplement the current repertoire of h-CLAT markers.


Assuntos
Alérgenos/toxicidade , Haptenos/toxicidade , Antígenos CD/genética , Biomarcadores , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Lectinas Tipo C/genética , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Receptores de Superfície Celular/genética , Testes Cutâneos , Células THP-1
5.
Toxicol Sci ; 163(1): 79-91, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29385569

RESUMO

Dronedarone and amiodarone are structurally similar antiarrhythmic drugs. Dronedarone worsens cardiac adverse effects with unknown causes while amiodarone has no cardiac adversity. Dronedarone induces preclinical mitochondrial toxicity in rat liver and exhibits clinical hepatotoxicity. Here, we further investigated the relative potential of the antiarrhythmic drugs in causing mitochondrial injury in cardiomyocytes. Differentiated rat H9c2 cardiomyocytes were treated with dronedarone, amiodarone, and their respective metabolites namely N-desbutyldronedarone (NDBD) and N-desethylamiodarone (NDEA). Intracellular ATP content, mitochondrial membrane potential (Δψm), and inhibition of carnitine palmitoyltransferase I (CPT1) activity and arachidonic acid (AA) metabolism were measured in H9c2 cells. Inhibition of electron transport chain (ETC) activities and uncoupling of ETC were further studied in isolated rat heart mitochondria. Dronedarone, amiodarone, NDBD and NDEA decreased intracellular ATP content significantly (IC50 = 0.49, 1.84, 1.07, and 0.63 µM, respectively) and dissipated Δψm potently (IC50 = 0.5, 2.94, 12.8, and 7.38 µM, respectively). Dronedarone, NDBD, and NDEA weakly inhibited CPT1 activity while amiodarone (IC50 > 100 µM) yielded negligible inhibition. Only dronedarone inhibited AA metabolism to its regioisomeric epoxyeicosatrienoic acids (EETs) consistently and potently. NADH-supplemented ETC activity was inhibited by dronedarone, amiodarone, NDBD and NDEA (IC50 = 3.07, 5.24, 11.94, and 16.16 µM, respectively). Cytotoxicity, ATP decrease and Δψm disruption were ameliorated via exogenous pre-treatment of H9c2 cells with 11, 12-EET and 14, 15-EET. Our study confirmed that dronedarone causes mitochondrial injury in cardiomyocytes by perturbing Δψm, inhibiting mitochondrial complex I, uncoupling ETC and dysregulating AA-EET metabolism. We postulate that cardiac mitochondrial injury is one potential contributing factor to dronedarone-induced cardiac failure exacerbation.


Assuntos
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Ácido 8,11,14-Eicosatrienoico/farmacologia , Antiarrítmicos/toxicidade , Cardiotônicos/farmacologia , Dronedarona/toxicidade , Mitocôndrias Cardíacas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo
6.
Biochem Pharmacol ; 146: 188-198, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-28958841

RESUMO

Cardiac enzymes such as cytochrome P450 2J2 (CYP2J2) metabolize arachidonic acid (AA) to cardioprotective epoxyeicosatrienoic acids (EETs), which in turn are metabolized by soluble epoxide hydrolase (sEH) to dihydroxyeicosatrienoic acids (DHETs). As EETs and less potent DHETs exhibit cardioprotective and vasoprotective functions, optimum levels of cardiac EETs are paramount in cardiac homeostasis. Previously, we demonstrated that dronedarone, amiodarone and their main metabolites, namely N-desbutyldronedarone (NDBD) and N-desethylamiodarone (NDEA), potently inhibit human cardiac CYP2J2-mediated astemizole metabolism in vitro. In this study, we investigated the inhibition of recombinant human CYP450 enzymes (rhCYP2J2, rhCYP2C8, rhCYP2C9)-mediated AA metabolism and human recombinant sEH (rhsEH)-mediated EET metabolism by dronedarone, amiodarone, NDBD and NDEA. A static model describing sequential metabolism was further developed to predict the aggregate effect of dual-inhibition of rhCYP2J2 and rhsEH on the fold-of 14,15-EET level (CEET'/CEET). Dronedarone, amiodarone and NDBD inhibit rhCYP2J2-mediated metabolism of AA to 14,15-EET with Ki values of 3.25, 5.48, 1.39µM respectively. Additionally, dronedarone, amiodarone, NDBD and NDEA inhibit rhsEH-mediated metabolism of 14,15-EET to 14,15-DHET with Ki values of 5.10, 13.08, 2.04, 1.88µM respectively. Based on static sequential metabolism modelling, dronedarone (CEET'/CEET=0.85), amiodarone (CEET'/CEET=0.48) and NDBD (CEET'/CEET=0.76) were predicted to decrease cardiac 14,15-EET level whereas NDEA (CEET'/CEET>35.5) was predicted to elevate it. Based on our novel findings, we postulate the differential cardiac exacerbation potential of dronedarone and amiodarone is partly associated with their differential inhibition potencies of cardiac CYP2J2 and sEH.


Assuntos
Amiodarona/análogos & derivados , Amiodarona/farmacologia , Ácido Araquidônico/metabolismo , Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Ácido 8,11,14-Eicosatrienoico/química , Ácido 8,11,14-Eicosatrienoico/metabolismo , Amiodarona/química , Amiodarona/metabolismo , Citocromo P-450 CYP2J2 , Inibidores das Enzimas do Citocromo P-450/química , Inibidores das Enzimas do Citocromo P-450/metabolismo , Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Dronedarona , Humanos , Cinética
7.
Biochem Pharmacol ; 135: 12-21, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28237650

RESUMO

Extrahepatic cytochrome P450 enzymes (CYP450) are pivotal in the metabolism of endogenous substrates and xenobiotics. CYP2J2 is a major cardiac CYP450 and primarily metabolizes polyunsaturated fatty acids such as arachidonic acid to cardioactive epoxyeicosatrienoic acids. Due to its role in endobiotic metabolism, CYP2J2 has been actively studied in recent years with the focus on its biological functions in cardiac pathophysiology. Additionally, CYP2J2 metabolizes a number of xenobiotics such as astemizole and terfenadine and is potently inhibited by danazol and telmisartan. Notably, CYP2J2 is found to be upregulated in multiple cancers. Hence a number of specific CYP2J2 inhibitors have been developed and their efficacy in inhibiting tumor progression has been actively studied. CYP2J2 inhibitor such as C26 (1-[4-(vinyl)phenyl]-4-[4-(diphenyl-hydroxymethyl)-piperidinyl]-butanone hydrochloride) caused marked reduction in tumor proliferation and migration as well as promoted apoptosis in cancer cells. In this review, we discuss the role of CYP2J2 in cardiac pathophysiology and cancer therapeutics. Additionally, we provide an update on the substrates, reversible inhibitors and irreversible inhibitors of CYP2J2. Finally, we discuss the current gaps and future directions in CYP2J2 research.


Assuntos
Antineoplásicos/uso terapêutico , Doenças Cardiovasculares/enzimologia , Inibidores das Enzimas do Citocromo P-450/uso terapêutico , Sistema Enzimático do Citocromo P-450/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Antineoplásicos/farmacologia , Doenças Cardiovasculares/fisiopatologia , Citocromo P-450 CYP2J2 , Inibidores das Enzimas do Citocromo P-450/farmacologia , Humanos , Especificidade por Substrato , Xenobióticos/farmacologia , Xenobióticos/uso terapêutico
8.
Biochem Pharmacol ; 107: 67-80, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26972388

RESUMO

Dronedarone, a multiple ion channel blocker is prescribed for the treatment of paroxysmal and persistent atrial fibrillation. While dronedarone does not precipitate toxicities like its predecessor amiodarone, its clinical use has been associated with idiosyncratic hepatic and cardiac adverse effects and drug-drug interactions (DDIs). As dronedarone is a potent mechanism-based inactivator of CYP3A4 and CYP3A5, a question arose if it exerts a similar inhibitory effect on CYP2J2, a prominent cardiac CYP450 enzyme. In this study, we demonstrated that CYP2J2 is reversibly inhibited by dronedarone (Ki=0.034 µM), amiodarone (Ki=4.8µM) and their respective pharmacologically active metabolites namely N-desbutyldronedarone (NDBD) (Ki=0.55 µM) and N-desethylamiodarone (NDEA) (Ki=7.4 µM). Moreover, time-, concentration- and NADPH-dependent irreversible inactivation of CYP2J2 was investigated where inactivation kinetic parameters (KI, kinact) and partition ratio (r) of dronedarone (0.05 µM, 0.034 min(-1), 3.3), amiodarone (0.21 µM, 0.015 min(-1), 20.7) and NDBD (0.48 µM, 0.024 min(-1), 21.7) were observed except for NDEA. The absence of the characteristic Soret peak, lack of recovery of CYP2J2 activity upon dialysis, and biotransformation of dronedarone and NDBD to quinone-oxime reactive metabolites further confirmed the irreversible inactivation of CYP2J2 by dronedarone and NDBD is via the covalent adduction of CYP2J2. Our novel findings illuminate the possible mechanisms of DDIs and cardiac adverse effects due to both reversible inhibition and irreversible inactivation of CYP2J2 by dronedarone, amiodarone and their active metabolites.


Assuntos
Amiodarona/análogos & derivados , Amiodarona/farmacologia , Antiarrítmicos/farmacologia , Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Modelos Moleculares , Pró-Fármacos/farmacologia , Ativação Metabólica/efeitos dos fármacos , Amiodarona/química , Amiodarona/metabolismo , Animais , Antiarrítmicos/metabolismo , Linhagem Celular , Citocromo P-450 CYP2J2 , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Descarboxilação/efeitos dos fármacos , Dronedarona , Humanos , Insetos , Cinética , Microssomos/efeitos dos fármacos , Microssomos/enzimologia , Estrutura Molecular , NADP/metabolismo , Oxirredução/efeitos dos fármacos , Pró-Fármacos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA