Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5547, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684231

RESUMO

Serotonin is a neurotransmitter that signals through 5-HT receptors to control key functions in the nervous system. Serotonin receptors are also ubiquitously expressed in various organs and have been detected in embryos of different organisms. Potential morphogenetic functions of serotonin signaling have been proposed based on pharmacological studies but a mechanistic understanding is still lacking. Here, we uncover a role of serotonin signaling in axis extension of Drosophila embryos by regulating Myosin II (MyoII) activation, cell contractility and cell intercalation. We find that serotonin and serotonin receptors 5HT2A and 5HT2B form a signaling module that quantitatively regulates the amplitude of planar polarized MyoII contractility specified by Toll receptors and the GPCR Cirl. Remarkably, serotonin signaling also regulates actomyosin contractility at cell junctions, cellular flows and epiblast morphogenesis during chicken gastrulation. This phylogenetically conserved mechanical function of serotonin signaling in regulating actomyosin contractility and tissue flow reveals an ancestral role in morphogenesis of multicellular organisms.


Assuntos
Actomiosina , Serotonina , Animais , Citoesqueleto de Actina , Transdução de Sinais , Proteínas do Citoesqueleto , Drosophila , Morfogênese
2.
Biophys J ; 122(19): 3909-3923, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37598292

RESUMO

In the epithelium, cell density and cell proliferation are closely connected to each other through contact inhibition of proliferation (CIP). Depending on cell density, CIP proceeds through three distinct stages: the free-growing stage at low density, the pre-epithelial transition stage at medium density, and the post-epithelial transition stage at high density. Previous studies have elucidated how cell morphology, motion, and mechanics vary in these stages. However, it remains unknown whether cellular metabolism also has a density-dependent behavior. By measuring the mitochondrial membrane potential at different cell densities, here we reveal a heterogeneous landscape of metabolism in the epithelium, which appears qualitatively distinct in three stages of CIP and did not follow the trend of other CIP-associated parameters, which increases or decreases monotonically with increasing cell density. Importantly, epithelial cells established a collective metabolic heterogeneity exclusively in the pre-epithelial transition stage, where the multicellular clusters of high- and low-potential cells emerged. However, in the post-epithelial transition stage, the metabolic potential field became relatively homogeneous. Next, to study the underlying dynamics, we constructed a system biology model, which predicted the role of cell proliferation in metabolic potential toward establishing collective heterogeneity. Further experiments indeed revealed that the metabolic pattern spatially correlated with the proliferation capacity of cells, as measured by the nuclear localization of a pro-proliferation protein, YAP. Finally, experiments perturbing the actomyosin contractility revealed that, while metabolic heterogeneity was maintained in the absence of actomyosin contractility, its ab initio emergence depended on the latter. Taken together, our results revealed a density-dependent collective heterogeneity in the metabolic field of a pre-epithelial transition-stage epithelial monolayer, which may have significant implications for epithelial form and function.


Assuntos
Actomiosina , Inibição de Contato , Actomiosina/metabolismo , Células Epiteliais/metabolismo , Epitélio/metabolismo , Proliferação de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA